- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000100000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Hennig, Richard (1)
-
Prakash, Pawan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ab initio methods offer great promise for materials design, but they come with a hefty computational cost. Recent advances with machine learning interatomic potentials (MLIPs) have revolutionized molecular dynamic simulations by providing high accuracies similar to ab initio models but at much reduced computational cost. Our study evaluates the ultra-fast force fields (UF3) potential, employing linear regression with cubic B-spline basis for assessing effective two- and three-body potentials. On benchmarking, UF3 displays comparable precision to established models like GAP, MTP, NNP (Behler Parrinello), and qSNAP MLIPs, yet is significantly faster by two to three orders of magnitude. A distinct feature of UF3 is its capability to render visual representations of learned two- and three-body potentials, shedding light on potential gaps in the learning model. In refining UF3’s performance, a comprehensive sweep of the hyperparameter space was undertaken. While our current optimizations are concentrated on energies and forces, we are primed to broaden UF3’s evaluation spectrum, focusing on its applicability in critical areas of molecular dynamics simulations. The outcome of these investigations will not only enhance the predictability and usability of UF3 but also pave the way for its broader applications in advanced materials discovery and simulations.more » « less
An official website of the United States government

Full Text Available