skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Prakriya, Gautam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To verify safety and robustness of neural networks, researchers have successfully appliedabstract interpretation, primarily using the interval abstract domain. In this paper, we study the theoretical power and limits of the interval domain for neural-network verification. First, we introduce theinterval universal approximation(IUA) theorem. IUA shows that neural networks not only can approximate any continuous functionf(universal approximation) as we have known for decades, but we can find a neural network, using any well-behaved activation function, whose interval bounds are an arbitrarily close approximation of the set semantics off(the result of applyingfto a set of inputs). We call this notion of approximationinterval approximation. Our theorem generalizes the recent result of Baader et al. from ReLUs to a rich class of activation functions that we callsquashable functions. Additionally, the IUA theorem implies that we can always construct provably robust neural networks under ℓ-norm using almost any practical activation function. Second, we study the computational complexity of constructing neural networks that are amenable to precise interval analysis. This is a crucial question, as our constructive proof of IUA is exponential in the size of the approximation domain. We boil this question down to the problem of approximating the range of a neural network with squashable activation functions. We show that the range approximation problem (RA) is a Δ2-intermediate problem, which is strictly harder thanNP-complete problems, assumingcoNP⊄NP. As a result,IUA is an inherently hard problem: No matter what abstract domain or computational tools we consider to achieve interval approximation, there is no efficient construction of such a universal approximator. This implies that it is hard to construct a provably robust network, even if we have a robust network to start with. 
    more » « less