skip to main content

Search for: All records

Creators/Authors contains: "Prates, Ivan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Many subspecies were described to capture phenotypic variation in wide-ranging taxa, with some later being found to correspond to divergent genetic lineages. We investigate whether currently recognized subspecies correspond to distinctive and coherent evolutionary lineages in the widespread Australian lizard Ctenotus pantherinus based on morphological, mitochondrial and genome-wide nuclear variation. We find weak and inconsistent correspondence between morphological patterns and the presumed subspecies ranges, with character polymorphism within regions and broad morphological overlap across regions. Phylogenetic analyses suggest paraphyly of populations assignable to each subspecies, mitonuclear discordance and little congruence between subspecies ranges and the distribution of inferred clades. Genotypic clustering supports admixture across regions. These results undermine the presumed phenotypic and genotypic coherence and distinctiveness of C. pantherinus subspecies. Based on our findings, we comment on the operational and conceptual shortcomings of morphologically defined subspecies and discuss practical challenges in applying the general notion of subspecies as incompletely separated population lineages. We conclude by highlighting a historical asymmetry that has implications for ecology, evolution and conservation: subspecies proposed in the past are difficult to falsify even in the face of new data that challenge their coherence and distinctiveness, whereas modern researchers appear hesitant to propose new subspecies.

  2. Rates of species formation vary widely across the tree of life and contribute to massive disparities in species richness among clades. This variation can emerge from differences in metapopulation-level processes that affect the rates at which lineages diverge, persist, and evolve reproductive barriers and ecological differentiation. For example, populations that evolve reproductive barriers quickly should form new species at faster rates than populations that acquire reproductive barriers more slowly. This expectation implicitly links microevolutionary processes (the evolution of populations) and macroevolutionary patterns (the profound disparity in speciation rate across taxa). Here, leveraging extensive field sampling from the Neotropical Cerrado biome in a biogeographically controlled natural experiment, we test the role of an important microevolutionary process—the propensity for population isolation—as a control on speciation rate in lizards and snakes. By quantifying population genomic structure across a set of codistributed taxa with extensive and phylogenetically independent variation in speciation rate, we show that broad-scale patterns of species formation are decoupled from demographic and genetic processes that promote the formation of population isolates. Population isolation is likely a critical stage of speciation for many taxa, but our results suggest that interspecific variability in the propensity for isolation has little influence on speciation rates.more »These results suggest that other stages of speciation—including the rate at which reproductive barriers evolve and the extent to which newly formed populations persist—are likely to play a larger role than population isolation in controlling speciation rate variation in squamates.« less