Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The complete 31 P NMR chemical shift tensors for 22 inorganic phosphates obtained from ab initio computation are found to correspond closely to experimentally obtained parameters. Further improvement was found when structures determined by diffraction were geometry optimized. Besides aiding in spectral assignment, the cases where correspondence is significantly improved upon geometry optimization point to the crystal structures requiring correction.more » « less
-
Abstract Lithium‐rich transition metal oxides with a cation‐disordered rocksalt structure (disordered rocksalt oxides or DRX) are promising candidates for sustainable, next‐generation Li‐ion cathodes due to their high energy densities and compositional flexibility, enabling Co‐ and Ni‐free battery chemistries. However, current methods to synthesize DRX compounds require either high temperature (≈1000 °C) sintering for several hours, or high energy ball milling for several days in an inert atmosphere. Both methods are time‐ and energy‐intensive, limiting the scale up of DRX production. The present study reports the rapid synthesis of various DRX compositions in ambient air via a microwave‐assisted solid‐state technique resulting in reaction times as short as 5 min, which are more than two orders of magnitude faster than current synthesis methods. The DRX compounds synthesized via microwave are phase‐pure and have a similar short‐ and long‐range structure as compared to DRX materials synthesized via a standard solid‐state route, resulting in nearly identical electrochemical performance. In some cases, microwave heating allows for better particle size and morphology control. Overall, the rapid and energy‐efficient microwave technique provides a more sustainable route to produce DRX materials, further incentivizes the development of next‐generation DRX cathodes, and is key to accelerating their optimization via high‐throughput studies.
-
Abstract We demonstrate a novel crosslinked disulfide system as a cathode material for Li‐S cells that is designed with the two criteria of having only a single point of S−S scission and maximizing the ratio of S−S to the electrochemically inactive framework. The material therefore maximizes theoretical capacity while inhibiting the formation of polysulfide intermediates that lead to parasitic shuttle. The material we report contains a 1:1 ratio of S:C with a theoretical capacity of 609 mAh g−1. The cell gains capacity through 100 cycles and has 98 % capacity retention thereafter through 200 cycles, demonstrating stable, long‐term cycling. Raman spectroscopy confirms the proposed mechanism of disulfide bonds breaking to form a S−Li thiolate species upon discharge and reforming upon charge. Coulombic efficiencies near 100 % for every cycle, suggesting the suppression of polysulfide shuttle through the molecular design.
-
Abstract We demonstrate a novel crosslinked disulfide system as a cathode material for Li‐S cells that is designed with the two criteria of having only a single point of S−S scission and maximizing the ratio of S−S to the electrochemically inactive framework. The material therefore maximizes theoretical capacity while inhibiting the formation of polysulfide intermediates that lead to parasitic shuttle. The material we report contains a 1:1 ratio of S:C with a theoretical capacity of 609 mAh g−1. The cell gains capacity through 100 cycles and has 98 % capacity retention thereafter through 200 cycles, demonstrating stable, long‐term cycling. Raman spectroscopy confirms the proposed mechanism of disulfide bonds breaking to form a S−Li thiolate species upon discharge and reforming upon charge. Coulombic efficiencies near 100 % for every cycle, suggesting the suppression of polysulfide shuttle through the molecular design.