Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Detection of very weak forces and precise measurement of time are two of the many applications of quantum metrology to science and technology. To sense an unknown physical parameter, one prepares an initial state of a probe system, allows the probe to evolve as governed by a Hamiltonian H for some time t, and then measures the probe. If H is known, we can estimate t by this method; if t is known, we can estimate classical parameters on which H depends. The accuracy of a quantum sensor can be limited by either intrinsic quantum noise or by noise arising from the interactions of the probe with its environment. In this work, we introduce and study a fundamental trade-off, which relates the amount by which noise reduces the accuracy of a quantum clock to the amount of information about the energy of the clock that leaks to the environment. Specifically, we consider an idealized scenario in which a party Alice prepares an initial pure state of the clock, allows the clock to evolve for a time that is not precisely known, and then transmits the clock through a noisy channel to a party Bob. Meanwhile, the environment (Eve) receives any information about the clock that is lost during transmission. We prove that Bob’s loss of quantum Fisher information about the elapsed time is equal to Eve’s gain of quantum Fisher information about a complementary energy parameter. We also prove a similar, but more general, trade-off that applies when Bob and Eve wish to estimate the values of parameters associated with two noncommuting observables. We derive the necessary and sufficient conditions for the accuracy of the clock to be unaffected by the noise, which form a subset of the Knill-Laflamme error-correction conditions. A state and its local time-evolution direction, if they satisfy these conditions, are said to form a metrological code. We provide a scheme to construct metrological codes in the stabilizer formalism. We show that there are metrological codes that cannot be written as a quantum error-correcting code with similar distance in which the Hamiltonian acts as a logical operator, potentially offering new schemes for constructing states that do not lose any sensitivity upon application of a noisy channel. We discuss applications of the trade-off relation to sensing using a quantum many-body probe subject to erasure or amplitude-damping noise.more » « less
-
INTRODUCTION Solving quantum many-body problems, such as finding ground states of quantum systems, has far-reaching consequences for physics, materials science, and chemistry. Classical computers have facilitated many profound advances in science and technology, but they often struggle to solve such problems. Scalable, fault-tolerant quantum computers will be able to solve a broad array of quantum problems but are unlikely to be available for years to come. Meanwhile, how can we best exploit our powerful classical computers to advance our understanding of complex quantum systems? Recently, classical machine learning (ML) techniques have been adapted to investigate problems in quantum many-body physics. So far, these approaches are mostly heuristic, reflecting the general paucity of rigorous theory in ML. Although they have been shown to be effective in some intermediate-size experiments, these methods are generally not backed by convincing theoretical arguments to ensure good performance. RATIONALE A central question is whether classical ML algorithms can provably outperform non-ML algorithms in challenging quantum many-body problems. We provide a concrete answer by devising and analyzing classical ML algorithms for predicting the properties of ground states of quantum systems. We prove that these ML algorithms can efficiently and accurately predict ground-state properties of gapped local Hamiltonians, after learning from data obtained by measuring other ground states in the same quantum phase of matter. Furthermore, under a widely accepted complexity-theoretic conjecture, we prove that no efficient classical algorithm that does not learn from data can achieve the same prediction guarantee. By generalizing from experimental data, ML algorithms can solve quantum many-body problems that could not be solved efficiently without access to experimental data. RESULTS We consider a family of gapped local quantum Hamiltonians, where the Hamiltonian H ( x ) depends smoothly on m parameters (denoted by x ). The ML algorithm learns from a set of training data consisting of sampled values of x , each accompanied by a classical representation of the ground state of H ( x ). These training data could be obtained from either classical simulations or quantum experiments. During the prediction phase, the ML algorithm predicts a classical representation of ground states for Hamiltonians different from those in the training data; ground-state properties can then be estimated using the predicted classical representation. Specifically, our classical ML algorithm predicts expectation values of products of local observables in the ground state, with a small error when averaged over the value of x . The run time of the algorithm and the amount of training data required both scale polynomially in m and linearly in the size of the quantum system. Our proof of this result builds on recent developments in quantum information theory, computational learning theory, and condensed matter theory. Furthermore, under the widely accepted conjecture that nondeterministic polynomial-time (NP)–complete problems cannot be solved in randomized polynomial time, we prove that no polynomial-time classical algorithm that does not learn from data can match the prediction performance achieved by the ML algorithm. In a related contribution using similar proof techniques, we show that classical ML algorithms can efficiently learn how to classify quantum phases of matter. In this scenario, the training data consist of classical representations of quantum states, where each state carries a label indicating whether it belongs to phase A or phase B . The ML algorithm then predicts the phase label for quantum states that were not encountered during training. The classical ML algorithm not only classifies phases accurately, but also constructs an explicit classifying function. Numerical experiments verify that our proposed ML algorithms work well in a variety of scenarios, including Rydberg atom systems, two-dimensional random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases. CONCLUSION We have rigorously established that classical ML algorithms, informed by data collected in physical experiments, can effectively address some quantum many-body problems. These rigorous results boost our hopes that classical ML trained on experimental data can solve practical problems in chemistry and materials science that would be too hard to solve using classical processing alone. Our arguments build on the concept of a succinct classical representation of quantum states derived from randomized Pauli measurements. Although some quantum devices lack the local control needed to perform such measurements, we expect that other classical representations could be exploited by classical ML with similarly powerful results. How can we make use of accessible measurement data to predict properties reliably? Answering such questions will expand the reach of near-term quantum platforms. Classical algorithms for quantum many-body problems. Classical ML algorithms learn from training data, obtained from either classical simulations or quantum experiments. Then, the ML algorithm produces a classical representation for the ground state of a physical system that was not encountered during training. Classical algorithms that do not learn from data may require substantially longer computation time to achieve the same task.more » « less
-
Quantum many-body systems involving bosonic modes or gauge fields have infinite-dimensional local Hilbert spaces which must be truncated to perform simulations of real-time dynamics on classical or quantum computers. To analyze the truncation error, we develop methods for bounding the rate of growth of local quantum numbers such as the occupation number of a mode at a lattice site, or the electric field at a lattice link. Our approach applies to various models of bosons interacting with spins or fermions, and also to both abelian and non-abelian gauge theories. We show that if states in these models are truncated by imposing an upper limit Λ on each local quantum number, and if the initial state has low local quantum numbers, then an error at most ϵ can be achieved by choosing Λ to scale polylogarithmically with ϵ − 1 , an exponential improvement over previous bounds based on energy conservation. For the Hubbard-Holstein model, we numerically compute a bound on Λ that achieves accuracy ϵ , obtaining significantly improved estimates in various parameter regimes. We also establish a criterion for truncating the Hamiltonian with a provable guarantee on the accuracy of time evolution. Building on that result, we formulate quantum algorithms for dynamical simulation of lattice gauge theories and of models with bosonic modes; the gate complexity depends almost linearly on spacetime volume in the former case, and almost quadratically on time in the latter case. We establish a lower bound showing that there are systems involving bosons for which this quadratic scaling with time cannot be improved. By applying our result on the truncation error in time evolution, we also prove that spectrally isolated energy eigenstates can be approximated with accuracy ϵ by truncating local quantum numbers at Λ = polylog ( ϵ − 1 ) .more » « less
-
Quantum technology promises to revolutionize how we learn about the physical world. An experiment that processes quantum data with a quantum computer could have substantial advantages over conventional experiments in which quantum states are measured and outcomes are processed with a classical computer. We proved that quantum machines could learn from exponentially fewer experiments than the number required by conventional experiments. This exponential advantage is shown for predicting properties of physical systems, performing quantum principal component analysis, and learning about physical dynamics. Furthermore, the quantum resources needed for achieving an exponential advantage are quite modest in some cases. Conducting experiments with 40 superconducting qubits and 1300 quantum gates, we demonstrated that a substantial quantum advantage is possible with today’s quantum processors.more » « less
-
Abstract Due to intense interest in the potential applications of quantum computing, it is critical to understand the basis for potential exponential quantum advantage in quantum chemistry. Here we gather the evidence for this case in the most common task in quantum chemistry, namely, ground-state energy estimation, for generic chemical problems where heuristic quantum state preparation might be assumed to be efficient. The availability of exponential quantum advantage then centers on whether features of the physical problem that enable efficient heuristic quantum state preparation also enable efficient solution by classical heuristics. Through numerical studies of quantum state preparation and empirical complexity analysis (including the error scaling) of classical heuristics, in both ab initio and model Hamiltonian settings, we conclude that evidence for such an exponential advantage across chemical space has yet to be found. While quantum computers may still prove useful for ground-state quantum chemistry through polynomial speedups, it may be prudent to assume exponential speedups are not generically available for this problem.more » « less
An official website of the United States government
