Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Substrate-immobilized noble metal nanoplates: a review of their synthesis, assembly, and applicationnull (Ed.)Noble metal nanoplates are a unique class of two-dimensional (2D) nanomaterials whose planar geometry serves as one of the most important nanoscale building blocks. Referred to by names such as nanoplates, nanodisks, nanoprisms, and nanotriangles, they offer a distinct and compelling set of physicochemical properties renowned for their plasmonic response and catalytic activity. When immobilized on substrates, these same structures are empowered with new capabilities triggered by synergistic interactions with their support and coupling phenomena activated when adjacent nanostructures are held in place with nanometer-scale spacings. In this review, we bring together an impressive literature dedicated to the synthesis, assembly, and application of substrate-immobilized noble metal nanoplates where we highlight the interplay between the nanostructures and their support as a means for deriving a distinct and diverse product. Methods for obtaining substrate-bound nanoplates rely on colloid-to-substrate transfers or syntheses occurring directly on the substrate-surface and span a wide range of techniques including chemisorption, solvent evaporation assembly, air–liquid interfacial assembly, substrate- and seed-mediated syntheses, electrochemical syntheses, vapor-phase depositions, DNA-assisted assembly, and capillary assembly. Collectively, these techniques realize nanoplate formations that are random, close-packed assemblies, periodic arrays, and three-dimensional superlattices. Nanoplate functionality is demonstrated in sensor applications with a broad range of analytes that include explosives, environmentally persistent pollutants, illicit drugs, and microRNA biomarkers for cancer and cardiovascular disease, with proof-of-concept demonstrations as active plasmonics, skin-mountable sensors, point-of-care diagnostics, and electrochemical reactors. Together, this work demonstrates substrate-immobilized nanoplates as a powerful platform for realizing photo- and chemically-active surfaces of technological relevance.more » « less
-
Abstract Galvanic replacement reactions are widely used in the synthesis of bimetallic nanoshells. Essential to these syntheses is the design of template materials with electrochemical potentials that are low enough to facilitate the replacement of a wide variety of metals. While Cu is an attractive template from this standpoint, it has only rarely been used due to its propensity for oxidation and the associated difficulties in achieving chemically stable colloids. Here, a synthetic scheme is demonstrated for the design of supported Cu templates and their subsequent replacement with Rh where the detrimental influences of oxidation are not only mitigated but used to place shape and compositional controls on the reaction product. It is shown that the CuRh nanoshells can be produced that are shaped as substrate‐truncated nanocubes or cuboctahedrons depending upon the degree of exposure that the Cu templates have to dissolved oxygen. Moreover, it is demonstrated that the intentional surface oxidation of the Cu template followed by Cu2O removal results in galvanic replacement reactions yielding porous nanoshells with far greater Rh replacement. The study forwards the design of Cu templates for galvanic replacement reactions and presents opportunities for their use in other template‐mediated syntheses.