Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Water shortages caused by droughts lead to crop losses that affect billions of people around the world each year. By discovering how wild plants adapt to drought, it may be possible to identify traits and genes that help to improve the growth of crop plants when water is scarce. It has been suggested that plants have adapted to droughts by flowering at times of the year when droughts are less likely to occur. For example, if droughts are more likely to happen in spring, the plants may delay flowering until the summer. Arabidopsis thaliana is a small plant that is found across Eurasia, Africa and North America, including in areas that are prone to drought at different times of the year. Individual plants of the same species may carry different versions of the same gene (known as alleles). Some of these alleles may not work properly and are referred to as loss-of-function alleles. Monroe et al. investigated whether A. thaliana plants carry any loss-of-function alleles that are associated with droughts happening in the spring or summer, and whether they are linked to when those plants will flower. Monroe et al. analyzed satellite images collected over the last 30 years to measure when droughts have occurred. Next, they searched genome sequences of Arabidopsis thaliana for alleles that might help the plants to adapt to droughts in the spring or summer. Combining the two approaches revealed that loss-of-function alleles associated with spring droughts were strongly predicted to be associated with the plants flowering later in the year. Similarly, loss-of-function alleles associated with summer droughts were predicted to be associated with the plants flowering earlier in the year. These findings support the idea that plants can adapt to drought by changing when they produce flowers, and suggest that loss-of-function alleles play a major role in this process. New techniques for editing genes mean it is easier than ever to generate new loss-of-function alleles in specific genes. Therefore, the results presented by Monroe et al. may help researchers to develop new varieties of crop plants that are better adapted to droughts.more » « less
-
Abstract Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold,
α = 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine thatα = 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating.