skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Price, Tavis_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cycloparaphenylenes (CPPs) are the smallest possible armchair carbon nanotubes, the properties of which strongly depend on their ring size. They can be further tuned by either peripheral functionalization or by replacing phenylene rings for other aromatic units. Here we show how four novel donor–acceptor chromophores were obtained by incorporating fluorenone or 2‐(9H‐fluoren‐9‐ylidene)malononitrile into the loops of two differently sized CPPs. Synthetically, we managed to perform late‐stage functionalization of the fluorenone‐based rings by high‐yielding Knoevenagel condensations. The structures were confirmed by X‐ray crystallographic analyses, which revealed that replacing a phenylene for a fused‐ring‐system acceptor introduces additional strain. The donor–acceptor characters of the CPPs were supported by absorption and fluorescence spectroscopic studies, electrochemical studies (displaying the CPPs as multi‐redox systems undergoing reversible or quasi‐reversible redox events), as well as by computations. The oligophenylene parts were found to comprise the electron donor units of the macrocycles and the fluorenone parts the acceptor units. 
    more » « less