Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In the coming decade, thousands of stellar streams will be observed in the halos of external galaxies. What fundamental discoveries will we make about dark matter from these streams? As a first attempt to look at these questions, we model Magellan/Megacam imaging of the Centaurus A (Cen A) disrupting dwarf companion Dwarf 3 (Dw3) and its associated stellar stream, to find out what can be learned about the Cen A dark matter halo. We develop a novel external galaxy stream-fitting technique and generate model stellar streams that reproduce the stream morphology visible in the imaging. We find that there are many viable stream models that fit the data well, with reasonable parameters, provided that Cen A has a halo mass larger than M 200 > 4.70 × 10 12 M ⊙ . There is a second stream in Cen A’s halo that is also reproduced within the context of this same dynamical model. However, stream morphology in the imaging alone does not uniquely determine the mass or mass distribution for the Cen A halo. In particular, the stream models with high likelihood show covariances between the inferred Cen A mass distribution, the inferred Dw3 progenitor mass, the Dw3 velocity, and the Dw3 line-of-sight position. We show that these degeneracies can be broken with radial-velocity measurements along the stream, and that a single radial velocity measurement puts a substantial lower limit on the halo mass. These results suggest that targeted radial-velocity measurements will be critical if we want to learn about dark matter from extragalactic stellar streams.more » « less
-
ABSTRACT Gaia Data Release 2 revealed that the Milky Way contains significant indications of departures from equilibrium in the form of asymmetric features in the phase space density of stars in the Solar neighbourhood. One such feature is the z–vz phase spiral, interpreted as the response of the disc to the influence of a perturbation perpendicular to the disc plane, which could be external (e.g. a satellite) or internal (e.g. the bar or spiral arms). In this work, we use Gaia Data Release 3 to dissect the phase spiral by dividing the local data set into groups with similar azimuthal actions, Jϕ, and conjugate angles, θϕ, which selects stars on similar orbits and at similar orbital phases, thus having experienced similar perturbations in the past. These divisions allow us to explore areas of the Galactic disc larger than the surveyed region. The separation improves the clarity of the z–vz phase spiral and exposes changes to its morphology across the different action-angle groups. In particular, we discover a transition to two armed ‘breathing spirals’ in the inner Milky Way. We conclude that the local data contain signatures of not one, but multiple perturbations with the prospect to use their distinct properties to infer the properties of the interactions that caused them.more » « less
-
ABSTRACT We present a novel method for constraining the length of the Galactic bar using 6D phase-space information to directly integrate orbits. We define a pseudo-length for the Galactic bar, named RFreq, based on the maximal extent of trapped bar orbits. We find the RFreq measured from orbits is consistent with the RFreq of the assumed potential only when the length of the bar and pattern speed of said potential is similar to the model from which the initial phase-space coordinates of the orbits are derived. Therefore, one can measure the model’s or the Milky Way’s bar length from 6D phase-space coordinates by determining which assumed potential leads to a self-consistent measured RFreq. When we apply this method to ≈210 000 stars in APOGEE DR17 and Gaia eDR3 data, we find a consistent result only for potential models with a dynamical bar length of ≈3.5 kpc. We find the Milky Way’s trapped bar orbits extend out to only ≈3.5 kpc, but there is also an overdensity of stars at the end of the bar out to 4.8 kpc which could be related to an attached spiral arm. We also find that the measured orbital structure of the bar is strongly dependent on the properties of the assumed potential.more » « less
-
Precise Gaia measurements of positions, parallaxes, and proper motions provide an opportunity to calculate 3D positions and 2D velocities (i.e., 5D phase-space) of Milky Way stars. Where available, spectroscopic radial velocity (RV) measurements provide full 6D phase-space information, however there are now and will remain many stars without RV measurements. Without an RV it is not possible to directly calculate 3D stellar velocities; however, one can infer 3D stellar velocities by marginalizing over the missing RV dimension. In this paper, we infer the 3D velocities of stars in the Kepler field in Cartesian Galactocentric coordinates (vx, vy, vz). We directly calculate velocities for around a quarter of all Kepler targets, using RV measurements available from the Gaia, LAMOST, and APOGEE spectroscopic surveys. Using the velocity distributions of these stars as our prior, we infer velocities for the remaining three quarters of the sample by marginalizing over the RV dimension. The median uncertainties on our inferred vx, vy, and vz velocities are around 4, 18, and 4 km/s, respectively. We provide 3D velocities for a total of 148,590 stars in the Kepler field. These 3D velocities could enable kinematic age-dating, Milky Way stellar population studies, and other scientific studies using the benchmark sample of well-studied Kepler stars. Although the methodology used here is broadly applicable to targets across the sky, our prior is specifically constructed from and for the Kepler field. Care should be taken to use a suitable prior when extending this method to other parts of the Galaxy.more » « less
-
Abstract The total mass of the Local Group (LG) is a fundamental quantity that enables interpreting the orbits of its constituent galaxies and placing the LG in a cosmological context. One of the few methods that allows inferring the total mass directly is the “Timing Argument,” which models the relative orbit of the Milky Way (MW) and M31 in equilibrium. The MW itself is not in equilibrium, a byproduct of its merger history and including the recent pericentric passage of the Large Magellanic Cloud (LMC), and recent work has found that the MW disk is moving with a lower bound “travel velocity” of ∼32 km s−1with respect to the outer stellar halo. Previous Timing Argument measurements have attempted to account for this nonequilibrium state, but have been restricted to theoretical predictions for the impact of the LMC specifically. In this paper, we quantify the impact of a travel velocity on recovered LG mass estimates using several different compilations of recent kinematic measurements of M31. We find that incorporating the measured value of the travel velocity lowers the inferred LG mass by 10%–12% compared to a static MW halo. Measurements of the travel velocity with more distant tracers could yield even larger values, which would further decrease the inferred LG mass. Therefore, the newly measured travel velocity directly implies a lower LG mass than from a model with a static MW halo and must be considered in future dynamical studies of the Local Volume.more » « less
-
Abstract We created the APOGEE-GALEX-Gaia catalog to study white dwarf (WD) binaries. This database aims to create a minimally biased sample of WD binary systems identified from a combination of GALEX, Gaia, and APOGEE data to increase the number of WD binaries with orbital parameters and chemical compositions. We identify 3414 sources as WD binary candidates, with nondegenerate companions of spectral types between F and M, including main-sequence stars, main-sequence binaries, subgiants, sub-subgiants, red giants, and red clump stars. Among our findings are (a) a total of 1806 systems having inferred WD radii R < 25 R ⊕ , which constitute a more reliable group of WD binary candidates within the main sample; (b) a difference in the metallicity distribution function between WD binary candidates and the control sample of most luminous giants ( M H < −3.0); (c) the existence of a population of sub-subgiants with WD companions; (d) evidence for shorter periods in binaries that contain WDs compared to those that do not, as shown by the cumulative distributions of APOGEE radial velocity shifts; (e) evidence for systemic orbital evolution in a sample of 252 WD binaries with orbital periods, based on differences in the period distribution between systems with red clump, main-sequence binary, and sub-subgiant companions and systems with main-sequence or red giant companions; and (f) evidence for chemical enrichment during common envelope (CE) evolution, shown by lower metallicities in wide WD binary candidates ( P > 100 days) compared to post-CE ( P < 100 days) WD binary candidates.more » « less
-
Abstract Stellar streams in the Galactic halo are useful probes of the assembly of galaxies like the Milky Way. Many tidal stellar streams that have been found in recent years are accompanied by a known progenitor globular cluster or dwarf galaxy. However, the Orphan–Chenab (OC) stream is one case where a relatively narrow stream of stars has been found without a known progenitor. In an effort to find the parent of the OC stream, we use astrometry from the early third data release of ESA’s Gaia mission (Gaia EDR3) and radial velocity information from the Sloan Digital Sky Survey (SDSS)-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to find up to 13 stars that are likely members of the OC stream. We use the APOGEE survey to study the chemical nature (for up to 10 stars) of the OC stream in theα(O, Mg, Ca, Si, Ti, and S), odd-Z(Al, K, and V), Fe-peak (Fe, Ni, Mn, Co, and Cr), and neutron-capture (Ce) elemental groups. We find that the stars that make up the OC stream are not consistent with a monometallic population and have a median metallicity of −1.92 dex with a dispersion of 0.28 dex. Our results also indicate that the α elements are depleted compared to the known Milky Way populations and that its [Mg/Al] abundance ratio is not consistent with second-generation stars from globular clusters. The detailed chemical pattern of these stars, namely the [α/Fe]–[Fe/H] plane and the metallicity distribution, indicates that the OC stream progenitor is very likely to be a dwarf spheroidal galaxy with a mass of ∼106M⊙.more » « less
-
Abstract A significant fraction of Milky Way (MW) satellites exhibit phase-space properties consistent with a coherent orbital plane. Using tailored N -body simulations of a spherical MW halo that recently captured a massive (1.8 × 10 11 M ⊙ ) LMC-like satellite, we identify the physical mechanisms that may enhance the clustering of orbital poles of objects orbiting the MW. The LMC deviates the orbital poles of MW dark matter particles from the present-day random distribution. Instead, the orbital poles of particles beyond R ≈ 50 kpc cluster near the present-day orbital pole of the LMC along a sinusoidal pattern across the sky. The density of orbital poles is enhanced near the LMC by a factor δ ρ max = 30% (50%) with respect to underdense regions and δ ρ iso = 15% (30%) relative to the isolated MW simulation (no LMC) between 50 and 150 kpc (150–300 kpc). The clustering appears after the LMC’s pericenter (≈50 Myr ago, 49 kpc) and lasts for at least 1 Gyr. Clustering occurs because of three effects: (1) the LMC shifts the velocity and position of the central density of the MW’s halo and disk; (2) the dark matter dynamical friction wake and collective response induced by the LMC change the kinematics of particles; (3) observations of particles selected within spatial planes suffer from a bias, such that measuring orbital poles in a great circle in the sky enhances the probability of their orbital poles being clustered. This scenario should be ubiquitous in hosts that recently captured a massive satellite (at least ≈1:10 mass ratio), causing the clustering of orbital poles of halo tracers.more » « less
-
Abstract Signatures of vertical disequilibrium have been observed across the Milky Way’s (MW’s) disk. These signatures manifest locally as unmixed phase spirals inz–vzspace (“snails-in-phase”), and globally as nonzero meanzandvz, wrapping around the disk into physical spirals in thex–yplane (“snails-in-space”). We explore the connection between these local and global spirals through the example of a satellite perturbing a test-particle MW-like disk. We anticipate our results to broadly apply to any vertical perturbation. Using az–vzasymmetry metric, we demonstrate that in test-particle simulations: (a) multiple local phase-spiral morphologies appear when stars are binned by azimuthal actionJϕ, excited by a single event (in our case, a satellite disk crossing); (b) these distinct phase spirals are traced back to distinct disk locations; and (c) they are excited at distinct times. Thus, local phase spirals offer a global view of the MW’s perturbation history from multiple perspectives. Using a toy model for a Sagittarius (Sgr)–like satellite crossing the disk, we show that the full interaction takes place on timescales comparable to orbital periods of disk stars withinR≲ 10 kpc. Hence such perturbations have widespread influence, which peaks in distinct regions of the disk at different times. This leads us to examine the ongoing MW–Sgr interaction. While Sgr has not yet crossed the disk (currently,zSgr≈ −6 kpc,vz,Sgr≈ 210 km s−1), we demonstrate that the peak of the impact has already passed. Sgr’s pull over the past 150 Myr creates a globalvzsignature with amplitude ∝MSgr, which might be detectable in future spectroscopic surveys.more » « less