- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Price-Whelan, Adrian_M (2)
-
Al Kharusi, Nariman (1)
-
Beers, Timothy_C (1)
-
Besla, Gurtina (1)
-
Bonaca, Ana (1)
-
Conroy, Charlie (1)
-
Foote, Hayden_R (1)
-
Garavito-Camargo, Nicolás (1)
-
Hawkins, Keith (1)
-
Lee, Young_Sun (1)
-
Lucey, Madeline (1)
-
Patel, Ekta (1)
-
Peter, Annika_H_G (1)
-
Ramachandra, Nesar (1)
-
Thomas, Guillaume_F (1)
-
Ting, Yuan-Sen (1)
-
Yoon, Jinmi (1)
-
Zaritsky, Dennis (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Stellar streams in the Milky Way are promising detectors of low-mass dark matter (DM) subhalos predicted by ΛCDM. Passing subhalos induce perturbations in streams that indicate the presence of the subhalos. Understanding how known DM-dominated satellites impact streams is a crucial step toward using stream perturbations to constrain the properties of dark perturbers. Here, we cross-match a Gaia Early Data Release 3 and SEGUE member catalog of the Cetus-Palca stream (CPS) with H3 for additional radial velocity measurements and fit the orbit of the CPS using this six-dimensional (6D) data. We demonstrate for the first time that the ultra-faint dwarf Segue 2 had a recent (77 ± 5 Myr ago) close flyby (within the stream's 2σwidth) with the CPS. This interaction enables constraints on Segue 2’s mass and density profile at larger radii ( kpc) than are probed by its stars ( pc). While Segue 2 is not expected to strongly affect the portion of the stream covered by our 6D data, we predict that if Segue 2’s mass within ∼ 6 kpc is 5 × 109M⊙, the CPS's velocity dispersion will be ∼ 40 km s−1larger atϕ1 > 20° than atϕ1 < 0°. If no such heating is detected, Segue 2’s mass cannot exceed 109M⊙within ∼ 6 kpc. The proper motion distribution of the CPS near the impact site is mildly sensitive to the shape of Segue 2’s density profile. This study presents a critical test for frameworks designed to constrain properties of dark subhalos from stream perturbations.more » « less
-
Lucey, Madeline; Al Kharusi, Nariman; Hawkins, Keith; Ting, Yuan-Sen; Ramachandra, Nesar; Price-Whelan, Adrian_M; Beers, Timothy_C; Lee, Young_Sun; Yoon, Jinmi (, Monthly Notices of the Royal Astronomical Society)ABSTRACT Carbon-enhanced metal-poor (CEMP) stars comprise almost a third of stars with [Fe/H] < −2, although their origins are still poorly understood. It is highly likely that one sub-class (CEMP-s stars) is tied to mass-transfer events in binary stars, while another sub-class (CEMP-no stars) are enriched by the nucleosynthetic yields of the first generations of stars. Previous studies of CEMP stars have primarily concentrated on the Galactic halo, but more recently they have also been detected in the thick disc and bulge components of the Milky Way. Gaia DR3 has provided an unprecedented sample of over 200 million low-resolution (R ≈ 50) spectra from the BP and RP photometers. Training on the CEMP catalogue from the SDSS/SEGUE database, we use XGBoost to identify the largest all-sky sample of CEMP candidate stars to date. In total, we find 58 872 CEMP star candidates, with an estimated contamination rate of 12 per cent. When comparing to literature high-resolution catalogues, we positively identify 60–68 per cent of the CEMP stars in the data, validating our results and indicating a high completeness rate. Our final catalogue of CEMP candidates spans from the inner to outer Milky Way, with distances as close as r ∼ 0.8 kpc from the Galactic centre, and as far as r > 30 kpc. Future higher resolution spectroscopic follow-up of these candidates will provide validations of their classification and enable investigations of the frequency of CEMP-s and CEMP-no stars throughout the Galaxy, to further constrain the nature of their progenitors.more » « less
An official website of the United States government
