skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Prihar, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The development and measurable improvements in performance of large language models on natural language tasks opens the opportunity to utilize large language models in an educational setting to replicate human tutoring, which is often costly and inaccessible. We are particularly interested in large language models from the GPT series, created by OpenAI. In the original study we found that the quality of explanations generated with GPT-3.5 was poor, where two different approaches to generating explanations resulted in a 43% and 10% successrate. In a replication study, we were interested in whether the measurable improvements in GPT-4 performance led to a higher rate of success for generating valid explanations compared to GPT-3.5. A replication of the original study was conducted by using GPT-4 to generate explanations for the same problems given to GPT-3.5. Using GPT-4, explanation correctness dramatically improved to a success rate of 94%. We were further interested in evaluating if GPT-4 explanations were positively perceived compared to human-written explanations. A preregistered, follow-up study was implemented where 10 evaluators were asked to rate the quality of randomized GPT-4 and teacher-created explanations. Even with 4% of problems containing some amount of incorrect content, GPT-4 explanations were preferred over human explanations. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Many online learning platforms and MOOCs incorporate some amount of video-based content into their platform, but there are few randomized controlled experiments that evaluate the effective- ness of the different methods of video integration. Given the large amount of publicly available educational videos, an investigation into this content’s impact on students could help lead to more ef- fective and accessible video integration within learning platforms. In this work, a new feature was added into an existing online learn- ing platform that allowed students to request skill-related videos while completing their online middle-school mathematics assign- ments. A total of 18,535 students participated in two large-scale randomized controlled experiments related to providing students with publicly available educational videos. The first experiment investigated the effect of providing students with the opportunity to request these videos, and the second experiment investigated the effect of using a multi-armed bandit algorithm to recommend relevant videos. Additionally, this work investigated which features of the videos were significantly predictive of students’ performance and which features could be used to personalize students’ learning. Ultimately, students were mostly disinterested in the skill-related videos, preferring instead to use the platforms existing problem- specific support, and there was no statistically significant findings in either experiment. Additionally, while no video features were significantly predictive of students’ performance, two video fea- tures had significant qualitative interactions with students’ prior knowledge, which showed that different content creators were more effective for different groups of students. These findings can be used to inform the design of future video-based features within online learning platforms and the creation of different educational videos specifically targeting higher or lower knowledge students. 
    more » « less
  3. Large language models have recently been able to perform well in a wide variety of circumstances. In this work, we explore the possi- bility of large language models, specifically GPT-3, to write explanations for middle-school mathematics problems, with the goal of eventually us- ing this process to rapidly generate explanations for the mathematics problems of new curricula as they emerge, shortening the time to inte- grate new curricula into online learning platforms. To generate expla- nations, two approaches were taken. The first approach attempted to summarize the salient advice in tutoring chat logs between students and live tutors. The second approach attempted to generate explanations us- ing few-shot learning from explanations written by teachers for similar mathematics problems. After explanations were generated, a survey was used to compare their quality to that of explanations written by teachers. We test our methodology using the GPT-3 language model. Ultimately, the synthetic explanations were unable to outperform teacher written explanations. In the future more powerful large language models may be employed, and GPT-3 may still be effective as a tool to augment teachers’ process for writing explanations, rather than as a tool to replace them. The prompts, explanations, survey results, analysis code, and a dataset of tutoring chat logs are all available at BLINDED FOR REVIEW. 
    more » « less
  4. Large language models have recently been able to perform well in a wide variety of circumstances. In this work, we explore the possi- bility of large language models, specifically GPT-3, to write explanations for middle-school mathematics problems, with the goal of eventually us- ing this process to rapidly generate explanations for the mathematics problems of new curricula as they emerge, shortening the time to inte- grate new curricula into online learning platforms. To generate expla- nations, two approaches were taken. The first approach attempted to summarize the salient advice in tutoring chat logs between students and live tutors. The second approach attempted to generate explanations us- ing few-shot learning from explanations written by teachers for similar mathematics problems. After explanations were generated, a survey was used to compare their quality to that of explanations written by teachers. We test our methodology using the GPT-3 language model. Ultimately, the synthetic explanations were unable to outperform teacher written explanations. In the future more powerful large language models may be employed, and GPT-3 may still be effective as a tool to augment teach- ers’ process for writing explanations, rather than as a tool to replace them. The explanations, survey results, analysis code, and a dataset of tutoring chat logs are all available at https://osf.io/wh5n9/. 
    more » « less
  5. Many online learning platforms and MOOCs incorporate some amount of video-based content into their platform, but there are few randomized controlled experiments that evaluate the effective- ness of the different methods of video integration. Given the large amount of publicly available educational videos, an investigation into this content’s impact on students could help lead to more ef- fective and accessible video integration within learning platforms. In this work, a new feature was added into an existing online learn- ing platform that allowed students to request skill-related videos while completing their online middle-school mathematics assign- ments. A total of 18,535 students participated in two large-scale randomized controlled experiments related to providing students with publicly available educational videos. The first experiment investigated the effect of providing students with the opportunity to request these videos, and the second experiment investigated the effect of using a multi-armed bandit algorithm to recommend relevant videos. Additionally, this work investigated which features of the videos were significantly predictive of students’ performance and which features could be used to personalize students’ learning. Ultimately, students were mostly disinterested in the skill-related videos, preferring instead to use the platforms existing problem- specific support, and there was no statistically significant findings in either experiment. Additionally, while no video features were significantly predictive of students’ performance, two video fea- tures had significant qualitative interactions with students’ prior knowledge, which showed that different content creators were more effective for different groups of students. These findings can be used to inform the design of future video-based features within online learning platforms and the creation of different educational videos specifically targeting higher or lower knowledge students. 
    more » « less
  6. There is a growing need to empirically evaluate the quality of online instructional interventions at scale. In response, some online learning platforms have begun to implement rapid A/B testing of instructional interventions. In these scenarios, students participate in series of randomized ex- periments that evaluate problem-level interventions in quick succession, which makes it difficult to discern the effect of any particular intervention on their learning. Therefore, dis- tal measures of learning such as posttests may not provide a clear understanding of which interventions are effective, which can lead to slow adoption of new instructional meth- ods. To help discern the effectiveness of instructional in- terventions, this work uses data from 26,060 clickstream se- quences of students across 31 different online educational experiments exploring 51 different research questions and the students’ posttest scores to create and analyze different proximal surrogate measures of learning that can be used at the problem level. Through feature engineering and deep learning approaches, next-problem correctness was deter- mined to be the best surrogate measure. As more data from online educational experiments are collected, model based surrogate measures can be improved, but for now, next-problem correctness is an empirically effective proximal surrogate measure of learning for analyzing rapid problem- level experiments. The data and code 
    more » « less
  7. This work proposes Dynamic Linear Epsilon-Greedy, a novel con- textual multi-armed bandit algorithm that can adaptively assign personalized content to users while enabling unbiased statistical analysis. Traditional A/B testing and reinforcement learning ap- proaches have trade-offs between empirical investigation and max- imal impact on users. Our algorithm seeks to balance these objec- tives, allowing platforms to personalize content effectively while still gathering valuable data. Dynamic Linear Epsilon-Greedy was evaluated via simulation and an empirical study in the ASSIST- ments online learning platform. In simulation, Dynamic Linear Epsilon-Greedy performed comparably to existing algorithms and in ASSISTments, slightly increased students’ learning compared to A/B testing. Data collected from its recommendations allowed for the identification of qualitative interactions, which showed high and low knowledge students benefited from different content. Dynamic Linear Epsilon-Greedy holds promise as a method to bal- ance personalization with unbiased statistical analysis. All the data collected during the simulation and empirical study are publicly available at https://osf.io/zuwf7/. 
    more » « less
  8. There is a growing need to empirically evaluate the quality of online instructional interventions at scale. In response, some online learning platforms have begun to implement rapid A/B testing of instructional interventions. In these scenarios, students participate in series of randomized ex- periments that evaluate problem-level interventions in quick succession, which makes it difficult to discern the effect of any particular intervention on their learning. Therefore, dis- tal measures of learning such as posttests may not provide a clear understanding of which interventions are effective, which can lead to slow adoption of new instructional meth- ods. To help discern the effectiveness of instructional in- terventions, this work uses data from 26,060 clickstream se- quences of students across 31 different online educational experiments exploring 51 different research questions and the students’ posttest scores to create and analyze different proximal surrogate measures of learning that can be used at the problem level. Through feature engineering and deep learning approaches, next problem correctness was deter- mined to be the best surrogate measure. As more data from online educational experiments are collected, model based surrogate measures can be improved, but for now, next prob- lem correctness is an empirically effective proximal surrogate measure of learning for analyzing rapid problem-level exper- iments. 
    more » « less
  9. Many online learning platforms and MOOCs incorporate some amount of video-based content into their platform, but there are few randomized controlled experiments that evaluate the effective- ness of the different methods of video integration. Given the large amount of publicly available educational videos, an investigation into this content’s impact on students could help lead to more ef- fective and accessible video integration within learning platforms. In this work, a new feature was added into an existing online learn- ing platform that allowed students to request skill-related videos while completing their online middle-school mathematics assign- ments. A total of 18,535 students participated in two large-scale randomized controlled experiments related to providing students with publicly available educational videos. The first experiment investigated the effect of providing students with the opportunity to request these videos, and the second experiment investigated the effect of using a multi-armed bandit algorithm to recommend relevant videos. Additionally, this work investigated which features of the videos were significantly predictive of students’ performance and which features could be used to personalize students’ learning. Ultimately, students were mostly disinterested in the skill-related videos, preferring instead to use the platforms existing problem- specific support, and there was no statistically significant findings in either experiment. Additionally, while no video features were significantly predictive of students’ performance, two video fea- tures had significant qualitative interactions with students’ prior knowledge, which showed that different content creators were more effective for different groups of students. These findings can be used to inform the design of future video-based features within online learning platforms and the creation of different educational videos specifically targeting higher or lower knowledge students. The data and code used in this work is hosted by the Open Science Foundation. 
    more » « less
  10. Large language models have recently been able to perform well in a wide variety of circumstances. In this work, we explore the possi- bility of large language models, specifically GPT-3, to write explanations for middle-school mathematics problems, with the goal of eventually us- ing this process to rapidly generate explanations for the mathematics problems of new curricula as they emerge, shortening the time to inte- grate new curricula into online learning platforms. To generate expla- nations, two approaches were taken. The first approach attempted to summarize the salient advice in tutoring chat logs between students and live tutors. The second approach attempted to generate explanations us- ing few-shot learning from explanations written by teachers for similar mathematics problems. After explanations were generated, a survey was used to compare their quality to that of explanations written by teachers. We test our methodology using the GPT-3 language model. Ultimately, the synthetic explanations were unable to outperform teacher written explanations. In the future more powerful large language models may be employed, and GPT-3 may still be effective as a tool to augment teach- ers’ process for writing explanations, rather than as a tool to replace them. The explanations, survey results, analysis code, and a dataset of tutoring chat logs are all available at https://osf.io/wh5n9/. 
    more » « less