skip to main content


Search for: All records

Creators/Authors contains: "Pringle, Catherine M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2024
  2. Abstract

    Food webs are complex ecological networks that reveal species interactions and energy flow in ecosystems. Prevailing ecological knowledge on forested streams suggests that their food webs are based on allochthonous carbon, driven by a constant supply of organic matter from adjacent vegetation and limited primary production due to low light conditions. Extreme climatic disturbances can disrupt these natural ecosystem dynamics by altering resource availability, which leads to changes in food web structure and functioning. Here, we quantify the response of stream food webs to two major hurricanes (Irma and María, Category 5 and 4, respectively) that struck Puerto Rico in September 2017. Within two tropical forested streams (first and second order), we collected ecosystem and food web data 6 months prior to the hurricanes and 2, 9, and 18 months afterward. We assessed the structural (e.g., canopy) and hydrological (e.g., discharge) characteristics of the ecosystem and monitored changes in basal resources (i.e., algae, biofilm, and leaf litter), consumers (e.g., aquatic invertebrates, riparian consumers), and applied Layman's community‐wide metrics using the isotopic composition of13C and15N. Continuous stream discharge measurements indicated that the hurricanes did not cause an extreme hydrological event. However, the sixfold increase in canopy openness and associated changes in litter input appeared to trigger an increase in primary production. These food webs were primarily based on terrestrially derived carbon before the hurricanes, but most taxa (includingAtyaandXiphocarisshrimp, the consumers with highest biomass) shifted their food source to autochthonous carbon within 2 months of the hurricanes. We also found evidence that the hurricanes dramatically altered the structure of the food web, resulting in shorter (i.e., smaller food‐chain length), narrower (i.e., lower diversity of carbon sources) food webs, as well as increased trophic species packing. This study demonstrates how hurricane disturbance can alter stream food webs, changing the trophic base from allochthonous to autochthonous resources via changes in the physical environment (i.e., canopy defoliation). As hurricanes become more frequent and severe due to climate change, our findings greatly contribute to our understanding of the mechanisms that maintain forested stream trophic interactions amidst global change.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    Disturbances can alter the structure and function of ecosystems. In stream ecosystems, changes in discharge and physicochemistry at short, intermediate, and long recurrence intervals can affect food webs and ecosystem processes. In this paper, we compare pH regimes in streams at La Selva Biological Station, Costa Rica, where episodic acidification frequency across the stream network varies widely due to buffering from inputs of bicarbonate‐rich interbasin groundwater. To examine the effects of acidification on ecosystem structure and function, we experimentally increased the buffering capacity of a headwater stream reach and compared it to an unbuffered upstream reach. We compared these reaches to a naturally buffered and unbuffered reaches of a second headwater stream. We quantified ecosystem structural (macroinvertebrate assemblages on leaf litter and coarse woody debris) and functional responses (leaf litter and coarse woody debris decomposition rates, and growth rates of a focal insect taxon [Diptera: Chironomidae]). Non‐metric multidimensional scaling and analysis of similarity revealed that macroinvertebrate assemblages were relatively homogenous across the four study reaches, although the naturally buffered reach was the most dissimilar. Ecosystem function, as measured by chironomid growth rates, was greater in the naturally buffered reach, while decomposition rates did not differ across the four reaches. Our results indicate that biological assemblages are adapted to pH regimes of frequently acidified stream reaches. Our experiment informs the effects on structure and function at short time scales in streams that experience moderate acidification, but larger magnitude acidification events in response to hydroclimatic change, as projected under climate change scenarios, may induce stronger responses in streams.

     
    more » « less
  5. Abstract

    Freshwater migratory shrimp in Puerto Rico depend on watershed connectivity, from stream headwaters to the ocean, to complete their life cycle. Moreover, shrimp populations in different watersheds are known to be connected in an island‐wide metapopulation. However, low‐head dams paired with water intakes on streams draining the El Yunque National Forest (EYNF) reduce streamflow. Here, we examine the cumulative effects of low‐head dams on shrimp habitat connectivity over 37 years across seven EYNF watersheds. We calculate total and refugia habitat connectivity (where refugia habitat is defined as predator‐free upstream reaches above waterfalls >5 m in height) at a monthly time step using a habitat‐weighted index of longitudinal riverine connectivity, which incorporates location and operation of water intakes and streamflow variability. Findings indicate total and refugia habitat connectivity declined over 37 years (by 27% and 16%, respectively) as additional water intakes have been placed in lower reaches of watersheds. On a monthly time step, the proportion of streamflow withdrawn has the largest effect on habitat connectivity, with the result that connectivity is ~17% lower during drought years than in nondrought years and ~7% lower in dry compared with wet seasons. Our analysis of this long‐term dataset highlights how cumulative effects of low‐head dams paired with water intakes have reduced shrimp habitat connectivity. These results underscore the importance of reducing existing withdrawal rates in EYNF, and locating intakes where effects on connectivity are minimal, if conserving shrimp habitat is a management objective.

     
    more » « less
  6. Abstract

    Resilience of ecosystems to the sudden decline of large‐bodied species is dependent on characteristics of surviving guild members. However, that response may also be mediated by local habitat conditions. Here, we examine the mechanisms behind the observed lack of functional compensation in the algal‐grazing guild by insect grazers following the decline of tadpole grazers in a forested Panamanian stream. We examined: (1) shifts to the individual size distribution of insect grazers between pre‐ and post‐tadpole declines in pool and riffle habitats; (2) tadpole and insect preferences for small‐, medium‐, and large‐sized diatoms; and (3) a causal explanation for why insects did not functionally compensate for tadpole declines. The size distribution of insect grazers following tadpole declines differed between habitats, becoming uniform in pools and more right skewed toward a smaller size class in riffles. In both habitats, tadpoles selectively consumed medium‐sized diatoms but avoided the largest‐sized diatoms. In contrast, grazing insects selectively consumed small‐sized diatoms, but switched to medium‐sized diatoms after tadpole declines. Tadpole declines led to the loss of the strongest interactions between consumers and diatoms. Smaller‐bodied grazing insects could not duplicate these interactions, even with a shift in resource use, providing an explanation for the lack of functional compensation. Furthermore, tadpole declines led to different community structures in each habitat indicating that local habitat conditions mediated the response of surviving guild members. This suggests that the sudden decline of a large‐bodied species does not lead to a singular outcome for the surviving community.

     
    more » « less