- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Li (2)
-
Kyng, Rasmus (2)
-
Liu, Yang P (2)
-
Meierhans, Simon (2)
-
Probst_Gutenberg, Maximilian (2)
-
Sachdeva, Sushant (1)
-
Van_den_Brand, Jan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We give the first almost-linear total time algorithm for deciding if a flow of cost at most $$F$$ still exists in a directed graph, with edge costs and capacities, undergoing decremental updates, i.e., edge deletions, capacity decreases, and cost increases. This implies almost-linear time algorithms for approximating the minimum-cost flow value and s-t distance on such decremental graphs. Our framework additionally allows us to maintain decremental strongly connected components in almost-linear time deterministically. These algorithms also improve over the current best known runtimes for statically computing minimum-cost flow, in both the randomized and deterministic settings. We obtain our algorithms by taking the dual perspective, which yields cut-based algorithms. More precisely, our algorithm computes the flow via a sequence of $$m^{1+o(1)}$$-dynamic min-ratio cut problems, the dual analog of the dynamic min-ratio cycle problem that underlies recent fast algorithms for minimum-cost flow. Our main technical contribution is a new data structure that returns an approximately optimal min-ratio cut in amortized $$m^{o(1)}$$ time by maintaining a tree-cut sparsifier. This is achieved by devising a new algorithm to maintain the dynamic expander hierarchy of [Goranci-Racke-Saranurak-Tan, SODA 2021] that also works in capacitated graphs. All our algorithms are deterministic, though they can be sped up further using randomized techniques while still working against an adaptive adversary.more » « lessFree, publicly-accessible full text available October 27, 2025
-
Chen, Li; Kyng, Rasmus; Liu, Yang P; Meierhans, Simon; Probst_Gutenberg, Maximilian (, ACM)