Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Extensive research has been conducted on Ti–Fe–Sn ultrafine eutectic composites due to their high yield strength, compared to conventional microcrystalline alloys. The unique microstructure of ultrafine eutectic composites, which consists of the ultrafine-grained lamella matrix with the formation of primary dendrites, leads to high strength and desirable plasticity. A lamellar structure is known for its high strength with limited plasticity, owing to its interface-strengthening effect. Thus, extensive efforts have been conducted to induce the lamellar structure and control the volume fraction of primary dendrites to enhance plasticity by tailoring the compositions. In this study, however, it was found that not only the volume fraction of primary dendrites but also the morphology of dendrites constitute key factors in inducing excellent ductility. We selected three compositions of Ti–Fe–Sn ultrafine eutectic composites, considering the distinct volume fractions and morphologies of β-Ti dendrites based on the Ti–Fe–Sn ternary phase diagram. As these compositions approach quasi-peritectic reaction points, the α″-Ti martensitic phase forms within the primary β-Ti dendrites due to under-cooling effects. This pre-formation of the α″-Ti martensitic phase effectively governs the growth direction of β-Ti dendrites, resulting in the development of round-shaped primary dendrites during the quenching process. These microstructural evolutions of β-Ti dendrites, in turn, lead to an improvement in ductility without a significant compromise in strength. Hence, we propose that fine-tuning the composition to control the primary dendrite morphology can be a highly effective alloy design strategy, enabling the attainment of greater macroscopic plasticity without the typical ductility and strength trade-off.more » « less
-
Abstract The mechanical behavior and microstructural evolution of a BCC‐phase NbTaTiV refractory multi‐principal element alloy (RMPEA) is studied over a wide range of strain rates (10−3to 103s−1) and temperatures (room temperature to 850 °C). The mechanical property of present RMPEA shows less strain‐rate dependence and strong resistance to softening at high temperatures. Under high strain‐rate loading, the formation of thin type‐I twins is observed, which could lead to an increase in strain‐hardening rates. However, this hardening mechanism competes with adiabatic heating effects, resulting in the deterrence of strain‐hardening behaviors. In contrast, substantial strain‐hardening occurs at cryogenic temperatures due to the formation of twins, which act as stronger barriers to dislocation motion and interact with each other. To further understand the different strain‐hardening behaviors, density functional theory (DFT) calculations predict relatively low stacking fault energies and high twinning stress for the NbTaTiV RMPEA.more » « lessFree, publicly-accessible full text available September 1, 2026
An official website of the United States government
