Herein, we compared the developmental maturity of the cranium, limbs, and feeding apparatus in a perinatal common vampire bat relative to its mother. In addition, we introduce a method for combining two computed tomographic imaging techniques to three‐dimensionally reconstruct endocasts in poorly ossified crania. The
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Desmodus specimens were scanned using microcomputed tomography (microCT) and diffusible iodine‐based contrast‐enhanced CT to image bone and soft tissues. Muscles of the jaw and limbs, and the endocranial cavity were segmented using imaging software. Endocranial volume (ECV) of the perinatalDesmodus is 74% of adult ECV. The facial skeletal is less developed (e.g., palatal length 60% of adult length), but volumes for alveolar crypts/sockets of permanent teeth are nearly identical. The forelimb skeleton is uniformly less ossified than the distal hind limb, with no secondary centers ossified and an entirely cartilaginous carpus. All epiphyseal growth zones are active in the brachium and antebrachium, with the distal radius exhibiting the greatest number of proliferating chondrocytes arranged in columns. The hind limb skeleton is precociously ossified from the knee distally. The musculature of the fore limb, temporalis, and masseter muscles appear weakly developed (6–11% of the adult volume). In contrast, the leg and foot musculature is better developed (23–25% of adult volume), possibly enhancing the newborn's capability to grip the mother's fur.Desmodus is born relatively large, and our results suggest they are born neurally and dentally precocious, with generally underdeveloped limbs, especially the fore limb. -
Abstract Previous descriptive work on deciduous dentition of primates has focused disproportionately on great apes and humans. To address this bias in the literature, we studied 131 subadult nonhominoid specimens (including 110 newborns) describing deciduous tooth morphology and assessing maximum hydroxyapatite density (MHD). All specimens were CT scanned at 70 kVp and reconstructed at 20.5–39 μm voxels. Grayscale intensity from scans was converted to hydroxyapatite (HA) density (mg HA/cm3) using a linear conversion of grayscale values to calibration standards of known HA density (
R 2= .99). Using Amira software, mineralized dental tissues were captured by segmenting the tooth cusps first and then capturing the remainder of the teeth at descending thresholds of gray levels. We assessed the relationship of MHD of selected teeth to cranial length using Pearson correlation coefficients. In monkeys, anterior teeth are more mineralized than postcanine teeth. In tarsiers and most lemurs and lorises, postcanine teeth are the most highly mineralized. This suggests that monkeys have a more prolonged process of dental mineralization that begins with incisors and canines, while mineralization of postcanine teeth is delayed. This may in part be a result of relatively late weaning in most anthropoid primates. Results also reveal that in lemurs and lorises, MHD of the mandibular first permanent molar (M1) negatively correlates with cranial length. In contrast, the MHD of M1positively correlates with cranial length in monkeys. This supports the hypothesis that natural selection acts independently on dental growth as opposed to mineralization and indicates clear phylogenetic differences among primates.