skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Prusa, Kenneth J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Unpredictable variation in quality, including fresh pork water-holding capacity, remains challenging to pork processors and customers. Defining the diverse factors that influence fresh pork water-holding capacity is necessary to make progress in refining pork quality prediction methods. The objective was to utilize liquid chromatography and mass spectrometry coupled with tandem mass tag (TMT) multiplexing to evaluate the sarcoplasmic proteome of aged pork loins classified by purge loss. Fresh commercial pork loins were collected, aged 12 or 14 d postmortem, and pork quality and sensory attributes were evaluated. Chops were classified into Low (N = 27, average purge = 0.33%), Intermediate (N = 27, average purge = 0.72%), or High (N = 27, average purge = 1.19%) chop purge groups. Proteins soluble in a low-ionic strength buffer were extracted, digested with trypsin, labeled with 11-plex isobaric TMT reagents, and detected using a Q-Exactive Mass Spectrometer. Between the Low and High purge groups, 40 proteins were differentially (P < 0.05) abundant. The Low purge group had a greater abundance of proteins classified as structural and contractile, sarcoplasmic reticulum and calcium regulating, chaperone, and citric acid cycle enzymes than the High purge group. The presence of myofibrillar proteins in the aged sarcoplasmic proteome is likely due to postmortem degradation. These observations support our hypothesis that pork chops with low purge have a greater abundance of structural proteins in the soluble protein fraction. Together, these and other proteins in the aged sarcoplasmic proteome may be biomarkers of pork water-holding capacity. Additional research should establish the utility of these proteins as biomarkers early postmortem and over subsequent aging periods. 
    more » « less
  2. Abstract

    Fresh pork tenderness contributes to consumer satisfaction with the eating experience. Postmortem proteolysis of proteins within and between myofibrils has been closely linked with pork tenderness development. A clear understanding of the molecular features associated with pork tenderness development will provide additional targets and open the door to new solutions to improve and make pork tenderness development more consistent. Therefore, the objective was to utilize liquid chromatography and mass spectrometry with tandem mass tag (TMT) multiplexing to evaluate myofibrillar sub-proteome differences between pork chops of different instrumental star probe values. Pork loins (N = 120) were collected from a commercial harvest facility at 24 h postmortem. Quality and sensory attributes were evaluated at 24 h postmortem and after ~2 weeks of postmortem aging. Pork chops were grouped into 4 groups based on instrumental star probe value (group A,x¯ = 4.23 kg, 3.43 to 4.55 kg; group B,x¯ = 4.79 kg, 4.66 to 5.00 kg; group C,x¯ = 5.43 kg, 5.20 to 5.64 kg; group D,x¯ = 6.21 kg, 5.70 to 7.41 kg; n = 25 per group). Myofibrillar proteins from the samples aged ~2 wk were fractionated, washed, and solubilized in 8.3 M urea, 2 M thiourea, and 1% dithiothreitol. Proteins were digested with trypsin, labeled with 11-plex isobaric TMT reagents, and identified and quantified using a Q-Exactive Mass Spectrometer. Between groups A and D, 54 protein groups were differentially abundant (adjusted P < 0.05). Group A had a greater abundance of proteins related to the thick and thin filament and a lesser abundance of Z-line-associated proteins and metabolic enzymes than group D chops. These data highlight that distinct myofibrillar sub-proteomes are associated with pork chops of different tenderness values. Future research should evaluate changes immediately and earlier postmortem to further elucidate myofibrillar sub-proteome differences over the postmortem aging period.

     
    more » « less