A search for the nonresonant production of Higgs boson pairs in thechannel is performed usingof proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimized to probe anomalous values of the Higgs boson self-coupling modifierand of the quartic() coupling modifier. No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limitis set at 95% confidence-level on the Higgs boson pair production cross section normalized to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of() and(), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross sections assuming different kinematic benchmark scenarios.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
© 2024 CERN, for the ATLAS Collaboration 2024 CERN Free, publicly-accessible full text available August 1, 2025 -
A search for beyond the standard model spin-0 bosons,, that decay into pairs of electrons, muons, or tau leptons is presented. The search targets the associated production of such bosons with aorgauge boson, or a top quark-antiquark pair, and uses events with three or four charged leptons, including hadronically decaying tau leptons. The proton-proton collision data set used in the analysis was collected at the LHC from 2016 to 2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of. The observations are consistent with the predictions from standard model processes. Upper limits are placed on the product of cross sections and branching fractions of such new particles over the mass range of 15 to 350 GeV with scalar, pseudoscalar, or Higgs-boson-like couplings, as well as on the product of coupling parameters and branching fractions. Several model-dependent exclusion limits are also presented. For a Higgs-boson-likemodel, limits are set on the mixing angle of the Higgs boson with theboson. For the associated production of aboson with a top quark-antiquark pair, limits are set on the coupling to top quarks. Finally, limits are set for the first time on a fermiophilic dilaton-like model with scalar couplings and a fermiophilic axion-like model with pseudoscalar couplings.
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available July 1, 2025 -
A bstract A search for Higgs boson pair (HH) production with one Higgs boson decaying to two bottom quarks and the other to two W bosons are presented. The search is done using proton-proton collisions data at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb
− 1recorded by the CMS detector at the LHC from 2016 to 2018. The final states considered include at least one leptonically decaying W boson. No evidence for the presence of a signal is observed and corresponding upper limits on the HH production cross section are derived. The limit on the inclusive cross section of the nonresonant HH production, assuming that the distributions of kinematic observables are as expected in the standard model (SM), is observed (expected) to be 14 (18) times the value predicted by the SM, at 95% confidence level. The limits on the cross section are also presented as functions of various Higgs boson coupling modifiers, and anomalous Higgs boson coupling scenarios. In addition, limits are set on the resonant HH production via spin-0 and spin-2 resonances within the mass range 250–900 GeV.Free, publicly-accessible full text available July 1, 2025 -
A combination of the results of several searches for the electroweak production of the supersymmetric partners of standard model bosons, and of charged leptons, is presented. All searches use proton-proton collision data atrecorded with the CMS detector at the LHC in 2016–2018. The analyzed data correspond to an integrated luminosity of up to. The results are interpreted in terms of simplified models of supersymmetry. Two new interpretations are added with this combination: a model spectrum with the bino as the lightest supersymmetric particle together with mass-degenerate Higgsinos decaying to the bino and a standard model boson, and the compressed-spectrum region of a previously studied model of slepton pair production. Improved analysis techniques are employed to optimize sensitivity for the compressed spectra in the wino and slepton pair production models. The results are consistent with expectations from the standard model. The combination provides a more comprehensive coverage of the model parameter space than the individual searches, extending the exclusion by up to 125 GeV, and also targets some of the intermediate gaps in the mass coverage.
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available June 1, 2025 -
Abstract The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025).
Free, publicly-accessible full text available June 1, 2025 -
Abstract Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger.
Free, publicly-accessible full text available May 1, 2025 -
Abstract A search for exotic decays of the Higgs boson (
) with a mass of 125$$\text {H}$$ to a pair of light pseudoscalars$$\,\text {Ge}\hspace{-.08em}\text {V}$$ is performed in final states where one pseudoscalar decays to two$$\text {a}_{1} $$ quarks and the other to a pair of muons or$${\textrm{b}}$$ leptons. A data sample of proton–proton collisions at$$\tau $$ corresponding to an integrated luminosity of 138$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level ($$\,\text {fb}^{-1}$$ ) on the Higgs boson branching fraction to$$\text {CL}$$ and to$$\upmu \upmu \text{ b } \text{ b } $$ via a pair of$$\uptau \uptau \text{ b } \text{ b },$$ s. The limits depend on the pseudoscalar mass$$\text {a}_{1} $$ and are observed to be in the range (0.17–3.3)$$m_{\text {a}_{1}}$$ and (1.7–7.7)$$\times 10^{-4}$$ in the$$\times 10^{-2}$$ and$$\upmu \upmu \text{ b } \text{ b } $$ final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine upper limits on the branching fraction$$\uptau \uptau \text{ b } \text{ b } $$ at 95%$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} \rightarrow \ell \ell \text{ b } \text{ b})$$ , with$$\text {CL}$$ being a muon or a$$\ell $$ lepton. For different types of 2HDM+S, upper bounds on the branching fraction$$\uptau $$ are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space,$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$ values above 0.23 are excluded at 95%$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$ for$$\text {CL}$$ values between 15 and 60$$m_{\text {a}_{1}}$$ .$$\,\text {Ge}\hspace{-.08em}\text {V}$$ Free, publicly-accessible full text available May 1, 2025 -
A bstract A combination of searches for new heavy spin-1 resonances decaying into different pairings of
W ,Z , or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb− 1of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs ($$ \sqrt{s} $$ qq ,bb , , and$$ t\overline{t} $$ tb ) or third-generation leptons (τν andττ ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion.Free, publicly-accessible full text available April 1, 2025 -
Free, publicly-accessible full text available January 1, 2025
-
A bstract A search for new physics in top quark production with additional final-state leptons is performed using data collected by the CMS experiment in proton-proton collisions at
= 13 TeV at the LHC during 2016–2018. The data set corresponds to an integrated luminosity of 138 fb$$ \sqrt{s} $$ − 1. Using the framework of effective field theory (EFT), potential new physics effects are parametrized in terms of 26 dimension-six EFT operators. The impacts of EFT operators are incorporated through the event-level reweighting of Monte Carlo simulations, which allows for detector-level predictions. The events are divided into several categories based on lepton multiplicity, total lepton charge, jet multiplicity, and b-tagged jet multiplicity. Kinematic variables corresponding to the transverse momentum (p T) of the leading pair of leptons and/or jets as well as thep Tof on-shell Z bosons are used to extract the 95% confidence intervals of the 26 Wilson coefficients corresponding to these EFT operators. No significant deviation with respect to the standard model prediction is found.Free, publicly-accessible full text available December 1, 2024