skip to main content


Search for: All records

Creators/Authors contains: "Psallidas, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A search for the nonresonant production of Higgs boson pairs in theHHbb¯τ+τchannel is performed using140fb1of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimized to probe anomalous values of the Higgs boson self-coupling modifierκλand of the quarticHHVV(V=W,Z) coupling modifierκ2V. No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limitμHH<5.9(3.3)is set at 95% confidence-level on the Higgs boson pair production cross section normalized to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of3.1<κλ<9.0(2.5<κλ<9.3) and0.5<κ2V<2.7(0.2<κ2V<2.4), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross sections assuming different kinematic benchmark scenarios.

    © 2024 CERN, for the ATLAS Collaboration2024CERN 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  2. A search for beyond the standard model spin-0 bosons,ϕ, that decay into pairs of electrons, muons, or tau leptons is presented. The search targets the associated production of such bosons with aWorZgauge boson, or a top quark-antiquark pair, and uses events with three or four charged leptons, including hadronically decaying tau leptons. The proton-proton collision data set used in the analysis was collected at the LHC from 2016 to 2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of138fb1. The observations are consistent with the predictions from standard model processes. Upper limits are placed on the product of cross sections and branching fractions of such new particles over the mass range of 15 to 350 GeV with scalar, pseudoscalar, or Higgs-boson-like couplings, as well as on the product of coupling parameters and branching fractions. Several model-dependent exclusion limits are also presented. For a Higgs-boson-likeϕmodel, limits are set on the mixing angle of the Higgs boson with theϕboson. For the associated production of aϕboson with a top quark-antiquark pair, limits are set on the coupling to top quarks. Finally, limits are set for the first time on a fermiophilic dilaton-like model with scalar couplings and a fermiophilic axion-like model with pseudoscalar couplings.

    <supplementary-material><permissions><copyright-statement>© 2024 CERN, for the CMS Collaboration</copyright-statement><copyright-year>2024</copyright-year><copyright-holder>CERN</copyright-holder></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available July 1, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10537315-search-higgs-boson-pair-production-textrm-overline-textrm-textrm-textrm-decay-mode-proton-proton-collisions-sqrt-tev" itemprop="url"> <span class='span-link' itemprop="name">Search for Higgs boson pair production in the $$ \textrm{b}\overline{\textrm{b}}{\textrm{W}}^{+}{\textrm{W}}^{-} $$ decay mode in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1007/JHEP07(2024)293" target="_blank" title="Link to document DOI">https://doi.org/10.1007/JHEP07(2024)293  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Hayrapetyan, A</span> <span class="sep">; </span><span class="author" itemprop="author">Tumasyan, A</span> <span class="sep">; </span><span class="author" itemprop="author">Adam, W</span> <span class="sep">; </span><span class="author" itemprop="author">Andrejkovic, J W</span> <span class="sep">; </span><span class="author" itemprop="author">Bergauer, T</span> <span class="sep">; </span><span class="author" itemprop="author">Chatterjee, S</span> <span class="sep">; </span><span class="author" itemprop="author">Damanakis, K</span> <span class="sep">; </span><span class="author" itemprop="author">Dragicevic, M</span> <span class="sep">; </span><span class="author" itemprop="author">Escalante_Del_Valle, A</span> <span class="sep">; </span><span class="author" itemprop="author">Hussain, P S</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2024-07-01">July 2024</time> , Journal of High Energy Physics) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <title>A<sc>bstract</sc>

    A search for Higgs boson pair (HH) production with one Higgs boson decaying to two bottom quarks and the other to two W bosons are presented. The search is done using proton-proton collisions data at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1recorded by the CMS detector at the LHC from 2016 to 2018. The final states considered include at least one leptonically decaying W boson. No evidence for the presence of a signal is observed and corresponding upper limits on the HH production cross section are derived. The limit on the inclusive cross section of the nonresonant HH production, assuming that the distributions of kinematic observables are as expected in the standard model (SM), is observed (expected) to be 14 (18) times the value predicted by the SM, at 95% confidence level. The limits on the cross section are also presented as functions of various Higgs boson coupling modifiers, and anomalous Higgs boson coupling scenarios. In addition, limits are set on the resonant HH production via spin-0 and spin-2 resonances within the mass range 250–900 GeV.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  3. A combination of the results of several searches for the electroweak production of the supersymmetric partners of standard model bosons, and of charged leptons, is presented. All searches use proton-proton collision data ats=13TeVrecorded with the CMS detector at the LHC in 2016–2018. The analyzed data correspond to an integrated luminosity of up to137fb1. The results are interpreted in terms of simplified models of supersymmetry. Two new interpretations are added with this combination: a model spectrum with the bino as the lightest supersymmetric particle together with mass-degenerate Higgsinos decaying to the bino and a standard model boson, and the compressed-spectrum region of a previously studied model of slepton pair production. Improved analysis techniques are employed to optimize sensitivity for the compressed spectra in the wino and slepton pair production models. The results are consistent with expectations from the standard model. The combination provides a more comprehensive coverage of the model parameter space than the individual searches, extending the exclusion by up to 125 GeV, and also targets some of the intermediate gaps in the mass coverage.

    <supplementary-material><permissions><copyright-statement>© 2024 CERN, for the CMS Collaboration</copyright-statement><copyright-year>2024</copyright-year><copyright-holder>CERN</copyright-holder></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available June 1, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10517420-atlas-trigger-system-lhc-run-trigger-performance" itemprop="url"> <span class='span-link' itemprop="name">The ATLAS trigger system for LHC Run 3 and trigger performance in 2022</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1088/1748-0221/19/06/P06029" target="_blank" title="Link to document DOI">https://doi.org/10.1088/1748-0221/19/06/P06029  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Aad, G</span> <span class="sep">; </span><span class="author" itemprop="author">Aakvaag, E</span> <span class="sep">; </span><span class="author" itemprop="author">Abbott, B</span> <span class="sep">; </span><span class="author" itemprop="author">Abeling, K</span> <span class="sep">; </span><span class="author" itemprop="author">Abicht, NJ</span> <span class="sep">; </span><span class="author" itemprop="author">Abidi, SH</span> <span class="sep">; </span><span class="author" itemprop="author">Aboulhorma, A</span> <span class="sep">; </span><span class="author" itemprop="author">Abramowicz, H</span> <span class="sep">; </span><span class="author" itemprop="author">Abreu, H</span> <span class="sep">; </span><span class="author" itemprop="author">Abulaiti, Y</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2024-06-01">June 2024</time> , Journal of Instrumentation) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <title>Abstract

    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025).

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  4. Abstract

    Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  5. Abstract

    A search for exotic decays of the Higgs boson ($$\text {H}$$H) with a mass of 125$$\,\text {Ge}\hspace{-.08em}\text {V}$$GeVto a pair of light pseudoscalars$$\text {a}_{1} $$a1is performed in final states where one pseudoscalar decays to two$${\textrm{b}}$$bquarks and the other to a pair of muons or$$\tau $$τleptons. A data sample of proton–proton collisions at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$s=13TeVcorresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level ($$\text {CL}$$CL) on the Higgs boson branching fraction to$$\upmu \upmu \text{ b } \text{ b } $$μμbband to$$\uptau \uptau \text{ b } \text{ b },$$ττbb,via a pair of$$\text {a}_{1} $$a1s. The limits depend on the pseudoscalar mass$$m_{\text {a}_{1}}$$ma1and are observed to be in the range (0.17–3.3) $$\times 10^{-4}$$×10-4and (1.7–7.7) $$\times 10^{-2}$$×10-2in the$$\upmu \upmu \text{ b } \text{ b } $$μμbband$$\uptau \uptau \text{ b } \text{ b } $$ττbbfinal states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine upper limits on the branching fraction$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} \rightarrow \ell \ell \text{ b } \text{ b})$$B(Ha1a1bb)at 95%$$\text {CL}$$CL, with$$\ell $$being a muon or a$$\uptau $$τlepton. For different types of 2HDM+S, upper bounds on the branching fraction$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$B(Ha1a1)are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space,$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$B(Ha1a1)values above 0.23 are excluded at 95%$$\text {CL}$$CLfor$$m_{\text {a}_{1}}$$ma1values between 15 and 60$$\,\text {Ge}\hspace{-.08em}\text {V}$$GeV.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  6. A<sc>bstract</sc>

    A combination of searches for new heavy spin-1 resonances decaying into different pairings ofW,Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb1of proton-proton collisions at$$ \sqrt{s} $$s= 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq,bb,$$ t\overline{t} $$tt¯, andtb) or third-generation leptons (τνandττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  7. Free, publicly-accessible full text available January 1, 2025
  8. A<sc>bstract</sc>

    A search for new physics in top quark production with additional final-state leptons is performed using data collected by the CMS experiment in proton-proton collisions at$$ \sqrt{s} $$s= 13 TeV at the LHC during 2016–2018. The data set corresponds to an integrated luminosity of 138 fb1. Using the framework of effective field theory (EFT), potential new physics effects are parametrized in terms of 26 dimension-six EFT operators. The impacts of EFT operators are incorporated through the event-level reweighting of Monte Carlo simulations, which allows for detector-level predictions. The events are divided into several categories based on lepton multiplicity, total lepton charge, jet multiplicity, and b-tagged jet multiplicity. Kinematic variables corresponding to the transverse momentum (pT) of the leading pair of leptons and/or jets as well as thepTof on-shell Z bosons are used to extract the 95% confidence intervals of the 26 Wilson coefficients corresponding to these EFT operators. No significant deviation with respect to the standard model prediction is found.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024