Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Continuous geodetic measurements near volcanic systems can image magma transport dynamics, yet resolving dike intrusions with high spatiotemporal resolution remains challenging. We introduce fiber-optic geodesy, leveraging low-frequency distributed acoustic sensing (LFDAS) recordings along a telecommunication fiber-optic cable, to track dike intrusions near Grindavík, Iceland, on a minute timescale. LFDAS reveals distinct strain responses from nine intrusive events, six resulting in fissure eruptions. Geodetic inversion of LFDAS strain reveals detailed magmatic intrusions, with inferred dike volume rate peaking systematically 15 to 22 min before the onset of each eruption. Our results demonstrate DAS’s potential for a dense strainmeter array, enabling high-resolution, nearly real-time imaging of subsurface quasi-static deformations. In active volcanic regions, LFDAS recordings can offer critical insights into magmatic evolution, eruption forecasting, and hazard assessment.more » « lessFree, publicly-accessible full text available April 24, 2026
-
o what extent mechanical anisotropy is required to explain the dynamics of the lithosphere is an important yet unresolved question. If anisotropy affects stress and deformation, and hence processes such as fault loading, how can we quantify its role from observations? Here, we derive analytical solutions and build a theoretical framework to explore how a shear zone with linear anisotropic viscosity can lead to deviatoric stress heterogeneity, strain-rate enhancement, as well as non-coaxial principal stress and strain rate. We develop an open-source finite-element software based on FEniCS for more complicated scenarios in both 2-D and 3-D. Mechanics of shear zones with transversely isotropic and orthorhombic anisotropy subjected to misoriented shortening and simple shearing are explored. A simple regional example for potential non-coaxiality for the Leech River Schist above the Cascadia subduction zone is presented. Our findings and these tools may help to better understand, detect and evaluate mechanical anisotropy in natural settings, with potential implications including the transfer of lithospheric stress and deformation through fault loading.more » « less
-
Rock strength has long been linked to lithospheric deformation and seismicity. However, independent constraints on the related elastic heterogeneity are missing, yet could provide key information for solid Earth dynamics. Using coseismic Global Navigation Satellite Systems (GNSS) data for the 2011 M9 Tohoku-oki earthquake in Japan, we apply an inverse method to infer elastic structure and fault slip simultaneously. We find compliant material beneath the volcanic arc and in the mantle wedge within the partial melt generation zone inferred to lie above ~100 km slab depth. We also identify low-rigidity material closer to the trench matching seismicity patterns, likely associated with accretionary wedge structure. Along with traditional seismic and electromagnetic methods, our approach opens up avenues for multiphysics inversions. Those have the potential to advance earthquake and volcano science, and in particular once expanded to InSAR type constraints, may lead to a better understanding of transient lithospheric deformation across scales.more » « less
An official website of the United States government
