- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Pulliainen, Jouni (3)
-
Rautiainen, Kimmo (2)
-
Tamminen, Johanna (2)
-
Abshire, James B (1)
-
Arola, Antti (1)
-
Berg, Aaron (1)
-
Bianchi, Federico (1)
-
Black, T. Andrew (1)
-
Brucker, Ludovic (1)
-
Cai, Jing (1)
-
Cai, Runlong (1)
-
Carroll, Mark L (1)
-
Carton, James (1)
-
Chan, Tommy (1)
-
Chen, Liangduo (1)
-
Chu, Biwu (1)
-
Comiso, Josefino C (1)
-
Dada, Lubna (1)
-
Daellenbach, Kaspar R. (1)
-
Deng, Chenjuan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. During the COVID-19 lockdown, the dramatic reduction of anthropogenicemissions provided a unique opportunity to investigate the effects ofreduced anthropogenic activity and primary emissions on atmospheric chemicalprocesses and the consequent formation of secondary pollutants. Here, weutilize comprehensive observations to examine the response of atmosphericnew particle formation (NPF) to the changes in the atmospheric chemicalcocktail. We find that the main clustering process was unaffected by thedrastically reduced traffic emissions, and the formation rate of 1.5 nmparticles remained unaltered. However, particle survival probability wasenhanced due to an increased particle growth rate (GR) during the lockdownperiod, explaining the enhanced NPF activity in earlier studies. For GR at1.5–3 nm, sulfuric acid (SA) was the main contributor at high temperatures,whilst there were unaccounted contributing vapors at low temperatures. ForGR at 3–7 and 7–15 nm, oxygenated organic molecules (OOMs) played amajor role. Surprisingly, OOM composition and volatility were insensitive tothe large change of atmospheric NOx concentration; instead theassociated high particle growth rates and high OOM concentration during thelockdown period were mostly caused by the enhanced atmospheric oxidativecapacity. Overall, our findings suggest a limited role of traffic emissionsin NPF.more » « less
-
Lyu, Haobo; McColl, Kaighin A.; Li, Xinlu; Derksen, Chris; Berg, Aaron; Black, T. Andrew; Euskirchen, Eugenie; Loranty, Michael; Pulliainen, Jouni; Rautiainen, Kimmo; et al (, Remote Sensing of Environment)
-
Duncan, Bryan N; Ott, Lesley E; Abshire, James B; Brucker, Ludovic; Carroll, Mark L; Carton, James; Comiso, Josefino C; Dinnat, Emmanuel P; Forbes, Bruce C; Gonsamo, Alemu; et al (, Reviews of Geophysics)Abstract Observations taken over the last few decades indicate that dramatic changes are occurring in the Arctic‐Boreal Zone (ABZ), which are having significant impacts on ABZ inhabitants, infrastructure, flora and fauna, and economies. While suitable for detecting overall change, the current capability is inadequate for systematic monitoring and for improving process‐based and large‐scale understanding of the integrated components of the ABZ, which includes the cryosphere, biosphere, hydrosphere, and atmosphere. Such knowledge will lead to improvements in Earth system models, enabling more accurate prediction of future changes and development of informed adaptation and mitigation strategies. In this article, we review the strengths and limitations of current space‐based observational capabilities for several important ABZ components and make recommendations for improving upon these current capabilities. We recommend an interdisciplinary and stepwise approach to develop a comprehensive ABZ Observing Network (ABZ‐ON), beginning with an initial focus on observing networks designed to gain process‐based understanding for individual ABZ components and systems that can then serve as the building blocks for a comprehensive ABZ‐ON.more » « less
An official website of the United States government
