Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Krzhizhanovskaya, Valeria V.; Závodszky, Gábor; Lees, Michael H.; Dongarra, Jack J.; Sloot, Peter M.; Brissos, Sérgio; Teixeira, João (Ed.)The HydroFrame project is a community platform designed to facilitate integrated hydrologic modeling across the US. As a part of HydroFrame, we seek to design innovative workflow solutions that create pathways to enable hydrologic analysis for three target user groups: the modeler, the analyzer, and the domain science educator. We present the initial progress on the HydroFrame community platform using an automated Kepler workflow. This workflow performs end-to-end hydrology simulations involving data ingestion, preprocessing, analysis, modeling, and visualization. We demonstrate how different modules of the workflow can be reused and repurposed for the three target user groups. The Kepler workflow ensures complete reproducibility through a built-in provenance framework that collects workflow specific parameters, software versions, and hardware system configuration. In addition, we aim to optimize the utilization of large-scale computational resources to adjust to the needs of all three user groups. Towards this goal, we present a design that leverages provenance data and machine learning techniques to predict performance and forecast failures using an automatic performance collection component of the pipeline.more » « less
-
There is significant variability in neutralizing antibody responses (which correlate with immune protection) after COVID-19 vaccination, but only limited information is available about predictors of these responses. We investigated whether device-generated summaries of physiological metrics collected by a wearable device correlated with post-vaccination levels of antibodies to the SARS-CoV-2 receptor-binding domain (RBD), the target of neutralizing antibodies generated by existing COVID-19 vaccines. One thousand, one hundred and seventy-nine participants wore an off-the-shelf wearable device (Oura Ring), reported dates of COVID-19 vaccinations, and completed testing for antibodies to the SARS-CoV-2 RBD during the U.S. COVID-19 vaccination rollout. We found that on the night immediately following the second mRNA injection (Moderna-NIAID and Pfizer-BioNTech) increases in dermal temperature deviation and resting heart rate, and decreases in heart rate variability (a measure of sympathetic nervous system activation) and deep sleep were each statistically significantly correlated with greater RBD antibody responses. These associations were stronger in models using metrics adjusted for the pre-vaccination baseline period. Greater temperature deviation emerged as the strongest independent predictor of greater RBD antibody responses in multivariable models. In contrast to data on certain other vaccines, we did not find clear associations between increased sleep surrounding vaccination and antibody responses.more » « less
-
Abstract Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables.more » « less
An official website of the United States government
