- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Hall, Deborah L. (1)
-
Jung, Seong (1)
-
Purohit, Monika (1)
-
Silva, Yasin (1)
-
Wheeler, Brittany (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent studies have documented increases in anti-Asian hate throughout the COVID-19 pandemic. Yet relatively little is known about how anti-Asian content on social media, as well as positive messages to combat the hate, have varied over time. In this study, we investigated temporal changes in the frequency of anti-Asian and counter-hate messages on Twitter during the first 16 months of the COVID-19 pandemic. Using the Twitter Data Collection Application Programming Interface, we queried all tweets from January 30, 2020 to April 30, 2021 that contained specific anti-Asian (e.g., #chinavirus, #kungflu) and counter-hate (e.g., #hateisavirus) keywords. From this initial data set, we extracted a random subset of 1,000 Twitter users who had used one or more anti-Asian or counter-hate keywords. For each of these users, we calculated the total number of anti-Asian and counter-hate keywords posted each month. Latent growth curve analysis revealed that the frequency of anti-Asian keywords fluctuated over time in a curvilinear pattern, increasing steadily in the early months and then decreasing in the later months of our data collection. In contrast, the frequency of counter-hate keywords remained low for several months and then increased in a linear manner. Significant between-user variability in both anti-Asian and counter-hate content was observed, highlighting individual differences in the generation of hate and counter-hate messages within our sample. Together, these findings begin to shed light on longitudinal patterns of hate and counter-hate on social media during the COVID-19 pandemic.more » « less
An official website of the United States government
