skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qadri, Mohamad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Differentiable 3D-Gaussian splatting (GS) is emerging as a prominent technique in computer vision and graphics for reconstructing 3D scenes. GS represents a scene as a set of 3D Gaussians with varying opacities and employs a computationally efficient splatting operation along with analytical derivatives to compute the 3D Gaussian parameters given scene images captured from various viewpoints. Unfortunately, capturing surround view (360° viewpoint) images is impossible or impractical in many real-world imaging scenarios, including underwater imaging, rooms inside a building, and autonomous navigation. In these restricted baseline imaging scenarios, the GS algorithm suffers from a well-known ‘missing cone’ problem, which results in poor reconstruction along the depth axis. In this paper, we demonstrate that using transient data (from sonars) allows us to address the missing cone problem by sampling high-frequency data along the depth axis. We extend the Gaussian splatting algorithms for two commonly used sonars and propose fusion algorithms that simultaneously utilize RGB camera data and sonar data. Through simulations, emulations, and hardware experiments across various imaging scenarios, we show that the proposed fusion algorithms lead to significantly better novel view synthesis (5 dB improvement in PSNR) and 3D geometry reconstruction (60% lower Chamfer distance). 
    more » « less
    Free, publicly-accessible full text available September 23, 2025
  2. We consider the problem of learning error covariance matrices for robotic state estimation. The convergence of a state estimator to the correct belief over the robot state is dependent on the proper tuning of noise models. During inference, these models are used to weigh different blocks of the Jacobian and error vector resulting from linearization and hence, additionally affect the stability and convergence of the non-linear system. We propose a gradient-based method to estimate well-conditioned covariance matrices by formulating the learning process as a constrained bilevel optimization problem over factor graphs. We evaluate our method against baselines across a range of simulated and real-world tasks and demonstrate that our technique converges to model estimates that lead to better solutions as evidenced by the improved tracking accuracy on unseen test trajectories. 
    more » « less
  3. Underwater perception and 3D surface reconstruction are challenging problems with broad applications in construction, security, marine archaeology, and environmental monitoring. Treacherous operating conditions, fragile surroundings, and limited navigation control often dictate that submersibles restrict their range of motion and, thus, the baseline over which they can capture measurements. In the context of 3D scene reconstruction, it is well-known that smaller baselines make reconstruction more challenging. Our work develops a physics-based multimodal acoustic-optical neural surface reconstruction framework (AONeuS) capable of effectively integrating high-resolution RGB measurements with low-resolution depth-resolved imaging sonar measurements. By fusing these complementary modalities, our framework can reconstruct accurate high-resolution 3D surfaces from measurements captured over heavily-restricted baselines. Through extensive simulations and in-lab experiments, we demonstrate that AONeuS dramatically outperforms recent RGB-only and sonar-only inverse-differentiable-rendering--based surface reconstruction methods. 
    more » « less
  4. In this work, we investigate the problem of incrementally solving constrained non-linear optimization problems formulated as factor graphs. Prior incremental solvers were either restricted to the unconstrained case or required periodic batch relinearizations of the objective and constraints which are expensive and detract from the online nature of the algorithm. We present InCOpt, an Augmented Lagrangian-based incremental constrained optimizer that views matrix operations as message passing over the Bayes tree. We first show how the linear system, resulting from linearizing the constrained objective, can be represented as a Bayes tree. We then propose an algorithm that views forward and back substitutions, which naturally arise from solving the Lagrangian, as upward and downward passes on the tree. Using this formulation, In-COpt can exploit properties such as fluid/online relinearization leading to increased accuracy without a sacrifice in runtime. We evaluate our solver on different applications (navigation and manipulation) and provide an extensive evaluation against existing constrained and unconstrained solvers. 
    more » « less
  5. RACOD is an algorithm/hardware co-design for mobile robot path planning. It consists of two main components: CODAcc, a hardware accelerator for collision detection; and RASExp, an algorithm extension for runahead path exploration. CODAcc uses a novel MapReduce-style hardware computational model and massively parallelizes individual collision checks. RASExp predicts future path explorations and proactively computes its collision status ahead of time, thereby overlapping multiple collision detections. By affording multiple cheap CODAcc accelerators and overlapping collision detections using RASExp, RACOD significantly accelerates planning for mobile robots operating in arbitrary environments. Evaluations of popular benchmarks show up to 41.4× (self-driving cars) and 34.3× (pilotless drones) speedup with less than 0.3% area overhead. While the performance is maximized when CODAcc and RASExp are used together, they can also be used individually. To illustrate, we evaluate CODAcc alone in the context of a stationary robotic arm and show that it improves performance by 3.4×–3.8×. Also, we evaluate RASExp alone on commodity many-core CPU and GPU platforms by implementing it purely in software and show that with 32/128 CPU/GPU threads, it accelerates the end-to-end planning time by 8.6×/2.9×. 
    more » « less