skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qi Zhu, Fang Guo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carlotta Demeniconi, Ian Davidson: (Ed.)
    Multi-document summarization, which summarizes a set of documents with a small number of phrases or sentences, provides a concise and critical essence of the documents. Existing multi-document summarization methods ignore the fact that there often exist many relevant documents that provide surrounding background knowledge, which can help generate a salient and discriminative summary for a given set of documents. In this paper, we propose a novel method, SUMDocS (Surrounding-aware Unsupervised Multi-Document Summarization), which incorporates rich surrounding (topically related) documents to help improve the quality of extractive summarization without human supervision. Speci fically, we propose a joint optimization algorithm to unify global novelty (i.e., category-level frequent and discriminative), local consistency (i.e., locally frequent, co-occurring), and local saliency (i.e., salient from its surroundings) such that the obtained summary captures the characteristics of the target documents. Extensive experiments on news and scientifi c domains demonstrate the superior performance of our method when the unlabeled surrounding corpus is utilized. 
    more » « less