skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qiao, Litao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IEEE Open Journal of the Computer Society (Ed.)
    While neural networks have been achieving increasingly significant excitement in solving classification tasks such as natural language processing, their lack of interpretability becomes a great challenge for neural networks to be deployed in certain high-stakes human-centered applications. To address this issue, we propose a new approach for generating interpretable predictions by inferring a simple three-layer neural network with threshold activations, so that it can benefit from effective neural network training algorithms and at the same time, produce human-understandable explanations for the results. In particular, the hidden layer neurons in the proposed model are trained with floating point weights and binary output activations. The output neuron is also trainable as a threshold logic function that implements a disjunctive operation, forming the logical-OR of the first-level threshold logic functions. This neural network can be trained using state-of-the-art training methods to achieve high prediction accuracy. An important feature of the proposed architecture is that only a simple greedy algorithm is required to provide an explanation with the prediction that is human-understandable. In comparison with other explainable decision models, our proposed approach achieves more accurate predictions on a broad set of tabular data classification datasets. 
    more » « less
  2. We propose a novel three-layer neural network architecture with threshold activations for tabular data classification problems. The hidden layer units correspond to trainable neurons with arbitrary weights and biases and a step activation. These neurons are logically equivalent to threshold logic functions. The output layer neuron is also a threshold function that implements a conjunction of the hidden layer threshold functions. This neural network architecture can leverage state-of-the-art network training methods to achieve high prediction accuracy, and the network is designed so that minimal human understandable explanations can be readily derived from the model. Further, we employ a sparsity-promoting regularization approach to sparsify the threshold functions to simplify them, and to sparsify the output neuron so that it only depends on a small subset of hidden layer threshold functions. Experimental results show that our approach outperforms other state-of-the-art interpretable decision models in prediction accuracy. 
    more » « less