- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Qiao, M. (3)
-
Blanc, G. (2)
-
Lange, J. (2)
-
Tan, L. (2)
-
Benade, G (1)
-
Choi, Y. W. (1)
-
Demir, B. (1)
-
Ekbataniamiri, F. (1)
-
Fulton, M. L. (1)
-
Ma, M. (1)
-
Procaccia, AD (1)
-
Purevdorj‐Gage, L. (1)
-
Qiao, M (1)
-
Schang, L. M. (1)
-
Zhang, Y. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Blanc, G.; Lange, J.; Qiao, M.; Tan, L. (, APPROX/RANDOM 2021)Greedy decision tree learning heuristics are mainstays of machine learning practice, but theoretical justification for their empirical success remains elusive. In fact, it has long been known that there are simple target functions for which they fail badly (Kearns and Mansour, STOC 1996). Recent work of Brutzkus, Daniely, and Malach (COLT 2020) considered the smoothed analysis model as a possible avenue towards resolving this disconnect. Within the smoothed setting and for targets f that are k-juntas, they showed that these heuristics successfully learn f with depth-k decision tree hypotheses. They conjectured that the same guarantee holds more generally for targets that are depth-k decision trees. We provide a counterexample to this conjecture: we construct targets that are depth-k decision trees and show that even in the smoothed setting, these heuristics build trees of depth 2^{Ω(k)} before achieving high accuracy. We also show that the guarantees of Brutzkus et al. cannot extend to the agnostic setting: there are targets that are very close to k-juntas, for which these heuristics build trees of depth 2^{Ω(k)} before achieving high accuracy.more » « less
-
Blanc, G.; Lange, J.; Qiao, M.; Tan, L. (, Annual Symposium on Foundations of Computer Science)We give an nO(loglogn)-time membership query algorithm for properly and agnostically learning decision trees under the uniform distribution over {±1}n. Even in the realizable setting, the previous fastest runtime was nO(logn), a consequence of a classic algorithm of Ehrenfeucht and Haussler. Our algorithm shares similarities with practical heuristics for learning decision trees, which we augment with additional ideas to circumvent known lower bounds against these heuristics. To analyze our algorithm, we prove a new structural result for decision trees that strengthens a theorem of O'Donnell, Saks, Schramm, and Servedio. While the OSSS theorem says that every decision tree has an influential variable, we show how every decision tree can be “pruned” so that every variable in the resulting tree is influential.more » « less
-
Benade, G; Procaccia, AD; Qiao, M (, AAAI'19)