- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bao, Yan (1)
-
Bassham, Diane C. (1)
-
Chen, Liang (1)
-
Chen, Qin-Fang (1)
-
Chen, Tuochao (1)
-
Gao, Caiji (1)
-
Hou, Suiwen (1)
-
Huang, Li (1)
-
Hwang, Inhwan (1)
-
Jiang, Liwen (1)
-
Lai, Zhibing (1)
-
Lam, Monica S. (1)
-
Landay, James A. (1)
-
Li, Faqiang (1)
-
Liu, Yule (1)
-
Qi, Hua (1)
-
Qin, Fang (1)
-
Qiu, Rongliang (1)
-
Wang, Hao (1)
-
Wang, Pengwei (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In plants, autophagy is a conserved process by which intracellular materials, including damaged proteins, aggregates, and entire organelles, are trafficked to the vacuole for degradation, thus maintaining cellular homeostasis. The past few decades have seen extensive research into the core components of the central autophagy machinery and their physiological roles in plant growth and development as well as responses to biotic and abiotic stresses. Moreover, several methods have been established for monitoring autophagic activities in plants, and these have greatly facilitated plant autophagy research. However, some of the methodologies are prone to misuse or misinterpretation, sometimes casting doubt on the reliability of the conclusions being drawn about plant autophagy. Here, we summarize the methods that are widely used for monitoring plant autophagy at the physiological, microscopic, and biochemical levels, including discussions of their advantages and limitations, to provide a guide for studying this important process.more » « less
-
Yang, Jackie; Chen, Tuochao; Qin, Fang; Lam, Monica S.; Landay, James A. (, CHI '22: CHI Conference on Human Factors in Computing Systems)Full-body tracking in virtual reality improves presence, allows interaction via body postures, and facilitates better social expression among users. However, full-body tracking systems today require a complex setup fixed to the environment (e.g., multiple lighthouses/cameras) and a laborious calibration process, which goes against the desire to make VR systems more portable and integrated. We present HybridTrak, which provides accurate, real-time full-body tracking by augmenting inside-out1 upper-body VR tracking systems with a single external off-the-shelf RGB web camera. HybridTrak uses a full-neural solution to convert and transform users’ 2D full-body poses from the webcam to 3D poses leveraging the inside-out upper-body tracking data. We showed HybridTrak is more accurate than RGB or depth-based tracking methods on the MPI-INF-3DHP dataset. We also tested HybridTrak in the popular VRChat app and showed that body postures presented by HybridTrak are more distinguishable and more natural than a solution using an RGBD camera.more » « less
An official website of the United States government
