Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 11, 2026
-
Free, publicly-accessible full text available April 6, 2026
-
Free, publicly-accessible full text available July 21, 2025
-
Abstract Electromagnetic ion cyclotron waves in the Earth's outer radiation belt drive rapid electron losses through wave‐particle interactions. The precipitating electron flux can be high in the hundreds of keV energy range, well below the typical minimum resonance energy. One of the proposed explanations relies on nonresonant scattering, which causes pitch‐angle diffusion away from the fundamental cyclotron resonance. Here we propose the fractional sub‐cyclotron resonance, a second‐order nonlinear effect that scatters particles at resonance ordern = 1/2, as an alternate explanation. Using test‐particle simulations, we evaluate the precipitation ratios of sub‐MeV electrons for wave packets with various shapes, amplitudes, and wave normal angles. We show that the nonlinear sub‐cyclotron scattering produces larger ratios than the nonresonant scattering when the wave amplitude reaches sufficiently large values. The ELFIN CubeSats detected several events with precipitation ratio patterns matching our simulation, demonstrating the importance of sub‐cyclotron resonances during intense precipitation events.more » « less
-
Abstract Electromagnetic ion cyclotron (EMIC) waves can drive radiation belt depletion and Low‐Earth Orbit satellites can detect the resulting electron and proton precipitation. The ELFIN (Electron Losses and Fields InvestigatioN) CubeSats provide an excellent opportunity to study the properties of EMIC‐driven electron precipitation with much higher energy and pitch‐angle resolution than previously allowed. We collect EMIC‐driven electron precipitation events from ELFIN observations and use POES (Polar Orbiting Environmental Satellites) to search for 10s–100s keV proton precipitation nearby as a proxy of EMIC wave activity. Electron precipitation mainly occurs on localized radial scales (∼0.3 L), over 15–24 MLT and 5–8 L shells, stronger at ∼MeV energies and weaker down to ∼100–200 keV. Additionally, the observed loss cone pitch‐angle distribution agrees with quasilinear predictions at ≳250 keV (more filled loss cone with increasing energy), while additional mechanisms are needed to explain the observed low‐energy precipitation.more » « less
-
Abstract We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$$\Delta L\sim 0.56$$ ) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$$L\sim 5-7$$ at dusk, while a smaller subset exists at$$L\sim 8-12$$ at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$$L$$ -shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$$\sim 1.45$$ MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.more » « less
-
Abstract We investigate relativistic electron precipitation events detected by Polar Environmental Satellites (POES) in low‐Earth orbit in close conjunction with Van Allen Probe A observations of electromagnetic ion cyclotron (EMIC) waves near the geomagnetic equator. We show that the occurrence rate of >0.7 MeV electron precipitation recorded by POES during those times strongly increases, reaching statistically significant levels when the minimum electron energy for cyclotron resonance with hydrogen or helium band EMIC waves at the equator decreases below ≃1.0–2.5 MeV, as expected from the quasi‐linear theory. Both hydrogen and helium band EMIC waves can be effective in precipitating MeV electrons. However, >0.7 MeV electron precipitation is more often observed (at statistically significant levels) when the minimum electron energy for cyclotron resonance with hydrogen band waves is low (Emin = 0.6–1.0 MeV), whereas it is more often observed when the minimum electron energy for cyclotron resonance with helium band waves is slightly larger (Emin = 1.0–2.5 MeV). This is indicative of the warm plasma effects for waves approaching the He+gyrofrequency. We further show that most precipitation events had energies > 0.7–1.0 MeV, consistent with the estimated minimum energy (Emin ∼ 0.6 − 2.5 MeV) of cyclotron resonance with the observed EMIC waves during the majority of these events. However, 4 out of the 12 detected precipitation events cannot be explained by electron quasi‐linear scattering by the observed EMIC waves, and 12 out of 20 theoretically expected precipitation events were not detected by POES, suggesting the possibility of nonlinear effects likely present near the magnetic equator, or warm plasma effects, and/or narrowly localized bursts of EMIC waves.more » « less