Persistent volcanic activity is thought to be linked to degassing, but volatile transport at depth cannot be observed directly. Instead, we rely on indirect constraints, such as CO2‐H2O concentrations in melt inclusions trapped at different depth, but this data is rarely straight‐forward to interpret. In this study, we integrate a multiscale conduit‐flow model for non‐eruptive conditions and a volatile‐concentration model to compute synthetic profiles of volatile concentrations for different flow conditions and CO2fluxing. We find that actively segregating bubbles in the flow enhance the mixing of volatile‐poor and volatile‐rich magma in vertical conduit segments, even if the radius of these bubbles is several orders of magnitude smaller than the width of the conduit. This finding suggests that magma mixing is common in volcanic systems when magma viscosities are low enough to allow for bubble segregation as born out by our comparison with melt‐inclusion data: Our simulations show that even a small degree of mixing leads to volatile concentration profiles that are much more comparable to observations than either open‐ or closed‐system degassing trends for both Stromboli and Mount Erebus. Our results also show that two of the main processes affecting observed volatile concentrations, magma mixing and CO2fluxing, leave distinct observational signatures, suggesting that tracking them jointly could help better constrain changes in conduit flow. We argue that disaggregating melt‐inclusion data based on the eruptive behavior at the time could advance our understanding of how conduit flow changes with eruptive regimes.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Many volcanoes around the world are persistently active with continuous degassing for years or even centuries, sometimes exceeding historic records. Such long‐term stability contrasts with short‐term instability, reflected in eruptive episodes that punctuate passive degassing. These two aspects of persistent activity, long‐term stability as opposed to short‐term instability, are often conceptualized through two distinct model frameworks: Exchange‐flow in volcanic conduits is commonly invoked to explain the long‐term thermal balance and sustained passive degassing, while the ascent of large gas slugs is called upon to understand explosive eruptions. While typically considered separately, we propose here that both flow processes could occur jointly in the conduits of persistently active volcanoes and in transient connections between subvolcanic melt lenses. To understand the dynamic interplay between exchange flow and slug ascent, we link analogue laboratory experiments with direct numerical simulations. We find that the two flows superimpose without creating major disruptions when only considering the ascent of a single gas slug. However, the sequential ascent of multiple gas slugs is disruptive to the ambient exchange flow, because it may entail continual buildup of buoyant magma at depth. While our study focuses on the laboratory scale, we propose that the dependence of exchange‐flow stability on sequential slug ascent is relevant for understanding why explosive sequences are sometimes followed by effusive eruptions. Taken together, our work suggests that integrating exchange flow and slug ascent could provide a more complete understanding of persistently active volcanoes than either model framework offers in isolation.
-
Abstract Fractional crystallization is an essential process proposed to explain worldwide compositional abundances of igneous rocks. It requires crystals to precipitate from the melt and segregate from its residual melt, or experience crystal fractionation. The compositional abundances of volcanic systems show a bell curve distribution suggesting that the process has variable efficiencies. We test crystal fractionation efficiency in convective flow in low to intermediate crystallinity regime. We simulate the physical segregation of crystals from their residual melt at the scale of individual crystals, using a direct numerical method. We find that at low particle Reynolds numbers, crystals sink in clusters. The relatively rapid motion of clusters strips away residual melt. Our results show cluster settling can imprint observational signatures at the crystalline scale. The collective crystal behavior results in a crystal convection that governs the efficiency of crystal fractionation, providing a possible explanation for the bell curve distribution in volcanic systems.