skip to main content

Search for: All records

Creators/Authors contains: "Qiu, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We analyze the structure and evolution of ribbons from the M7.3 SOL2014-04-18T13 flare using ultraviolet images from the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), magnetic data from the SDO/Helioseismic and Magnetic Imager, hard X-ray (HXR) images from the Reuven Ramaty High Energy Solar Spectroscopic Imager, and light curves from the Fermi/Gamma-ray Burst Monitor, in order to infer properties of coronal magnetic reconnection. As the event progresses, two flare ribbons spread away from the magnetic polarity inversion line. The width of the newly brightened front along the extension of the ribbon is highlymore »intermittent in both space and time, presumably reflecting nonuniformities in the structure and/or dynamics of the flare current sheet. Furthermore, the ribbon width grows most rapidly in regions exhibiting concentrated nonthermal HXR emission, with sharp increases slightly preceding the HXR bursts. The light curve of the ultraviolet emission matches the HXR light curve at photon energies above 25 keV. In other regions the ribbon-width evolution and light curves do not temporally correlate with the HXR emission. This indicates that the production of nonthermal electrons is highly nonuniform within the flare current sheet. Our results suggest a strong connection between the production of nonthermal electrons and the locally enhanced perpendicular extent of flare ribbon fronts, which in turn reflects the inhomogeneous structure and/or reconnection dynamics of the current sheet. Despite this variability, the ribbon fronts remain nearly continuous, quasi-one-dimensional features. Thus, although the reconnecting coronal current sheets are highly structured, they remain quasi-two-dimensional and the magnetic energy release occurs systematically, rather than stochastically, through the volume of the reconnecting magnetic flux.« less
    Free, publicly-accessible full text available February 1, 2023
  2. Abstract—Networks have entered the mainstream lexicon over the last ten years. This coincides with the pervasive use of networks in a host of disciplines of interest to industry and academia, including biology, neurology, genomics, psychology, social sciences, economics, psychology, and cyber-physical systems and infrastructure. Several dozen journals and conferences regularly contain articles related to networks. Yet, there are no general purpose cyberinfrastructures (CI) that can be used across these varied disciplines and domains. Furthermore, while there are scientific gateways that include some network science capabilities for particular domains (e.g., biochemistry, genetics), there are no general-purpose network-based scientific gateways. In thismore »work, we introduce net.science, a CI for Network Engineering and Science, that is designed to be a community resource. This paper provides an overview of net.science, addressing key requirements and concepts, CI components, the types of applications that our CI will support, and various dimensions of our evaluation process. Index Terms—cyberinfrastructure, network science, net.science« less