Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Breast carcinoma is the most common cancer among women worldwide that consists of a heterogeneous group of subtype diseases. The whole-slide images (WSIs) can capture the cell-level heterogeneity, and are routinely used for cancer diagnosis by pathologists. However, key driver genetic mutations related to targeted therapies are identified by genomic analysis like high-throughput molecular profiling. In this study, we develop a deep-learning model to predict the genetic mutations and biological pathway activities directly from WSIs. Our study offers unique insights into WSI visual interactions between mutation and its related pathway, enabling a head-to-head comparison to reinforce our major findings. Using the histopathology images from the Genomic Data Commons Database, our model can predict the point mutations of six important genes (AUC 0.68–0.85) and copy number alteration of another six genes (AUC 0.69–0.79). Additionally, the trained models can predict the activities of three out of ten canonical pathways (AUC 0.65–0.79). Next, we visualized the weight maps of tumor tiles in WSI to understand the decision-making process of deep-learning models via a self-attention mechanism. We further validated our models on liver and lung cancers that are related to metastatic breast cancer. Our results provide insights into the association between pathological image features, molecular outcomes, and targeted therapies for breast cancer patients.more » « less
-
Deep learning architectures are usually proposed with millions of parameters, resulting in a memory issue when training deep neural networks with stochastic gradient descent type methods using large batch sizes. However, training with small batch sizes tends to produce low quality solution due to the large variance of stochastic gradients. In this paper, we tackle this problem by proposing a new framework for training deep neural network with small batches/noisy gradient. During optimization, our method iteratively applies a proximal type regularizer to make loss function strongly convex. Such regularizer stablizes the gradient, leading to better training performance. We prove that our algorithm achieves comparable convergence rate as vanilla SGD even with small batch size. Our framework is simple to implement and can be potentially combined with many existing optimization algorithms. Empirical results show that our method outperforms SGD and Adam when batch size is small. Our implementation is available at https://github.com/huiqu18/TRAlgorithm.more » « less