Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We have been witnessing an unprecedented increase in the aging population in human history. It is nontrivial to ensure the health and safety of seniors living alone. The prohibitive human labor cost necessitates more sustainable, technology oriented approaches instead of labor-intensive solutions. The raising digital healthcare services (DHS) leveraging the Internet of Medical Things (IoMT), Digital Twins (DT), and advanced fifth-generation and beyond (B5G) wireless communication technology, are widely recognized as promising solutions. By enabling a seamless interwoven of the physical world and cyberspace, Metaverse makes an ideal home for the next generation of DHS. Thanks to characteristics of decentralization, traceability, and unalterability, Blockchain is envisioned to enhance security properties in Metaverse. This paper proposes MetaSafe, a DHS architecture for seniors’ safety monitoring in Metaverse. Based on monitoring data collected by sensors, the activities and status of seniors, who are considered as the physical objects (PO), are mirrored to corresponding logical objects (LO) in a virtual community in the Metaverse, where activity recognition, potential risk prediction, and alert generation are realized. By leveraging Non-Fungible Token (NFT) technology to tokenize identities (POs and LOs) and data streams of the DHS on the blockchain, an NFT-based authentication fabric allows for verifiable ownership and traceable transferability during the data-sharing process. Specifically, an instant alerting system is introduced in this work that leverages a hybrid algorithm combining the singular spectrum analysis (SSA) approach with the long-short-term memory (LSTM) networks. Through an extensive experimental study, MetaSafe is validated as a feasible and promising approach to protect seniors living alone.more » « less
-
Blockchain technology has been recognized as a promising solution to enhance the security and privacy of Internet of Things (IoT) and Edge Computing scenarios. Taking advantage of the Proof-of-Work (PoW) consensus protocol, which solves a computation intensive hashing puzzle, Blockchain ensures the security of the system by establishing a digital ledger. However, the computation intensive PoW favors members possessing more computing power. In the IoT paradigm, fairness in the highly heterogeneous network edge environments must consider devices with various constraints on computation power. Inspired by the advanced features of Digital Twins (DT), an emerging concept that mirrors the lifespan and operational characteristics of physical objects, we propose a novel Miner Twins (MinT) architecture to enable a fair PoW consensus mechanism for blockchains in IoT environments. MinT adopts an edge-fog-cloud hierarchy. All physical miners of the blockchain are deployed as microservices on distributed edge devices, while fog/cloud servers maintain digital twins that periodically update miners’ running status. By timely monitoring of a miner’s footprint that is mirrored by twins, a lightweight Singular Spectrum Analysis (SSA)-based detection achieves the identification of individual misbehaved miners that violate fair mining. Moreover, we also design a novel Proof-of-Behavior (PoB) consensus algorithm to detect dishonest miners that collude to control a fair mining network. A preliminary study is conducted on a proof-of-concept prototype implementation, and experimental evaluation shows the feasibility and effectiveness of the proposed MinT scheme under a distributed byzantine network environment.more » « less
-
Abstract Disulfide bond‐containing peptides are useful molecular scaffolds with diagnostic and therapeutic applications due to their good biological activity and good target selectivity, but their utility is sometimes limited by the lability of the disulfide moiety under reducing conditions and in the presence of disulfide bond isomerase. The development of disulfide surrogates with improved redox stability has been an area of ongoing research; and one possible strategy is based on a diaminodiacid (DADA) moiety, which can be used to synthesize the disulfide bond replacement peptides with precise structures and enhanced stability through automated solid‐phase peptide synthesis (SPPS). This review summarizes recent developments in the DADA‐based SPPS of peptide disulfide surrogates. Some representative applications and structural studies on the DADA‐based disulfide surrogates are described.