skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Quackenbush, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modeling the time evolution of discrete sets of items (e.g., genetic mutations) is a fundamental problem in many biomedical applications. We approach this problem through the lens of continuous-time Markov chains, and show that the resulting learning task is generally underspecified in the usual setting of cross-sectional data. We explore a perhaps surprising remedy: including a number of additional independent items can help determine time order, and hence resolve underspecification. This is in sharp contrast to the common practice of limiting the analysis to a small subset of relevant items, which is followed largely due to poor scaling of existing methods. To put our theoretical insight into practice, we develop an approximate likelihood maximization method for learning continuous-time Markov chains, which can scale to hundreds of items and is orders of magnitude faster than previous methods. We demonstrate the effectiveness of our approach on synthetic and real cancer data. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. This paper presents a new algorithm, Reinforced and Informed Network-based Clustering (RINC), for finding unknown groups of similar data objects in sparse and largely non-overlapping feature space where a network structure among features can be observed. Sparse and non-overlapping unlabeled data become increasingly common and available especially in text mining and biomedical data mining. RINC inserts a domain informed model into a modelless neural network. In particular, our approach integrates physically meaningful feature dependencies into the neural network architecture and soft computational constraint. Our learning algorithm efficiently clusters sparse data through integrated smoothing and sparse auto-encoder learning. The informed design requires fewer samples for training and at least part of the model becomes explainable. The architecture of the reinforced network layers smooths sparse data over the network dependency in the feature space. Most importantly, through back-propagation, the weights of the reinforced smoothing layers are simultaneously constrained by the remaining sparse auto-encoder layers that set the target values to be equal to the raw inputs. Empirical results demonstrate that RINC achieves improved accuracy and renders physically meaningful clustering results. 
    more » « less
  5. Abstract BACKGROUND

    Despite widespread interest in next-generation sequencing (NGS), the adoption of personalized clinical genomics and mutation profiling of cancer specimens is lagging, in part because of technical limitations. Tumors are genetically heterogeneous and often contain normal/stromal cells, features that lead to low-abundance somatic mutations that generate ambiguous results or reside below NGS detection limits, thus hindering the clinical sensitivity/specificity standards of mutation calling. We applied COLD-PCR (coamplification at lower denaturation temperature PCR), a PCR methodology that selectively enriches variants, to improve the detection of unknown mutations before NGS-based amplicon resequencing.


    We used both COLD-PCR and conventional PCR (for comparison) to amplify serially diluted mutation-containing cell-line DNA diluted into wild-type DNA, as well as DNA from lung adenocarcinoma and colorectal cancer samples. After amplification of TP53 (tumor protein p53), KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog), IDH1 [isocitrate dehydrogenase 1 (NADP+), soluble], and EGFR (epidermal growth factor receptor) gene regions, PCR products were pooled for library preparation, bar-coded, and sequenced on the Illumina HiSeq 2000.


    In agreement with recent findings, sequencing errors by conventional targeted-amplicon approaches dictated a mutation-detection limit of approximately 1%–2%. Conversely, COLD-PCR amplicons enriched mutations above the error-related noise, enabling reliable identification of mutation abundances of approximately 0.04%. Sequencing depth was not a large factor in the identification of COLD-PCR–enriched mutations. For the clinical samples, several missense mutations were not called with conventional amplicons, yet they were clearly detectable with COLD-PCR amplicons. Tumor heterogeneity for the TP53 gene was apparent.


    As cancer care shifts toward personalized intervention based on each patient's unique genetic abnormalities and tumor genome, we anticipate that COLD-PCR combined with NGS will elucidate the role of mutations in tumor progression, enabling NGS-based analysis of diverse clinical specimens within clinical practice.

    more » « less