skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Quarderer, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern science depends on computers, but not all scientists have access to the scale of computation they need. A digital divide separates scientists who accelerate their science using large cyberinfrastructure from those who do not, or who do not have access to the compute resources or learning opportunities to develop the skills needed. The exclusionary nature of the digital divide threatens equity and the future of innovation by leaving people out of the scientific process while over-amplifying the voices of a small group who have resources. However, there are potential solutions: recent advancements in public research cyberinfrastructure and resources developed during the open science revolution are providing tools that can help bridge this divide. These tools can enable access to fast and powerful computation with modest internet connections and personal computers. Here we contribute another resource for narrowing the digital divide: scalable virtual machines running on public cloud infrastructure. We describe the tools, infrastructure, and methods that enabled successful deployment of a reproducible and scalable cyberinfrastructure architecture for a collaborative data synthesis working group in February 2023. This platform enabled 45 scientists with varying data and compute skills to leverage 40,000 hours of compute time over a 4-day workshop. Our approach provides an open framework that can be replicated for educational and collaborative data synthesis experiences in any data- and compute-intensive discipline. 
    more » « less
  2. unknown (Ed.)
    Today’s data-driven world requires earth and environmental scientists to have skills at the intersection of domain and data science. These skills are imperative to harness information contained in a growing volume of complex data to solve the world's most pressing environmental challenges. Despite the importance of these skills, Earth and Environmental Data Science (EDS) training is not equally accessible, contributing to a lack of diversity in the field. This creates a critical need for EDS training opportunities designed specifically for underrepresented groups. In response, we designed the Earth Data Science Corps (EDSC) which couples a paid internship for undergraduate students with faculty training to build capacity to teach and learn EDS using Python at smaller Minority Serving Institutions. EDSC participants are further empowered to teach these skills at their home institutions which scales the program beyond the training lead by our team. Using a Rasch modeling approach, we found that participating in the EDSC program had a significant impact on learners’ comfort and confidence with technical and non-technical data science skills, as well as their science identity and sense of belonging in science, two critical aspects of recruiting and retaining members of underrepresented groups in STEM. 
    more » « less