Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Billard, A. ; Asfour, T. ; Khatib, O. (Ed.)Underwater navigation presents several challenges, including unstructured unknown environments, lack of reliable localization systems (e.g., GPS), and poor visibility. Furthermore, good-quality obstacle detection sensors for underwater robots are scant and costly; and many sensors like RGB-D cameras and LiDAR only work in-air. To enable reliable mapless underwater navigation despite these challenges, we propose a low-cost end-to-end navigation system, based on a monocular camera and a fixed single-beam echo-sounder, that efficiently navigates an underwater robot to waypoints while avoiding nearby obstacles. Our proposed method is based on Proximal Policy Optimization (PPO), which takes as input current relative goal information, estimated depth images, echo-sounder readings, and previous executed actions, and outputs 3D robot actions in a normalized scale. End-to-end training was done in simulation, where we adopted domain randomization (varying underwater conditions and visibility) to learn a robust policy against noise and changes in visibility conditions. The experiments in simulation and real-world demonstrated that our proposed method is successful and resilient in navigating a low-cost underwater robot in unknown underwater environments. The implementation is made publicly available at https://github.com/dartmouthrobotics/deeprl-uw-robot-navigation.more » « less
-
Billard, A. ; Asfour, T. ; Khatib, O. (Ed.)In this paper, we discuss how to effectively map an underwater structure with a team of robots considering the specific challenges posed by the underwater environment. The overarching goal of this work is to produce high-definition, accurate, photorealistic representation of underwater structures. Due to the many limitations of vision underwater, operating at a distance from the structure results in degraded images that lack details, while operating close to the structure increases the accumulated uncertainty due to the limited viewing area which causes drifting. We propose a multi-robot mapping framework that utilizes two types of robots: proximal observers which map close to the structure and distal observers which provide localization for proximal observers and bird’s-eye-view situational awareness. The paper presents the fundamental components and related current results from real shipwrecks and simulations necessary to enable the proposed framework, including robust state estimation, real-time 3D mapping, and active perception navigation strategies for the two types of robots. Then, the paper outlines interesting research directions and plans to have a completely integrated framework that allows robots to map in harsh environments.more » « less
-
Siciliano, B. ; Laschi, C. ; Khatib, O. (Ed.)
-
In this paper, we propose a real-time deep-learning approach for determining the 6D relative pose of Autonomous Underwater Vehicles (AUV) from a single image. A team of autonomous robots localizing themselves, in a communicationconstrained underwater environment, is essential for many applications such as underwater exploration, mapping, multirobot convoying, and other multi-robot tasks. Due to the profound difficulty of collecting ground truth images with accurate 6D poses underwater, this work utilizes rendered images from the Unreal Game Engine simulation for training. An image translation network is employed to bridge the gap between the rendered and the real images producing synthetic images for training. The proposed method predicts the 6D pose of an AUV from a single image as 2D image keypoints representing 8 corners of the 3D model of the AUV, and then the 6D pose in the camera coordinates is determined using RANSACbased PnP. Experimental results in underwater environments (swimming pool and ocean) with different cameras demonstrate the robustness of the proposed technique, where the trained system decreased translation error by 75.5\% and orientation error by 64.6\% over the state-of-the-art methods.more » « less