- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aalbers, J. (1)
-
AbdusSalam, S. S. (1)
-
Abe, K. (1)
-
Aerne, V. (1)
-
Agostini, F. (1)
-
Ahmed Maouloud, S. (1)
-
Akerib, D. S. (1)
-
Akimov, D. Y. (1)
-
Akshat, J. (1)
-
Al Musalhi, A. K. (1)
-
Alder, F. (1)
-
Alsum, S. K. (1)
-
Althueser, L. (1)
-
Amarasinghe, C. S. (1)
-
Amaro, F. D. (1)
-
Ames, A. (1)
-
Anderson, T. J. (1)
-
Andrieu, B. (1)
-
Angelides, N. (1)
-
Angelino, E. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Cosmic Gravitational Wave Background (CGWB) is an irreducible background of gravitational waves generated by particle exchange in the early Universe plasma. Standard Model particles contribute to such a stochastic background with a peak atf∼80 GHz. Any physics beyond the Standard Model (BSM) may modify the CGWB spectrum, making it a potential testing ground for BSM physics.We consider the impact of general BSM scenarios on the CGWB, including an arbitrary number of hidden sectors.We find that the largest amplitude of the CGWB comes from the sector that dominates the energy density after reheating and confirm the dominance of the SM for standard cosmological histories.For non-standard cosmological histories, such as those with a stiff equation of stateω> 1/3, like in kination, BSM physics may dominate and modify the spectrum substantially.We conclude that, if the CGWB is detected at lower frequencies and amplitudes compared to that of the SM, it will hint at extra massive degrees of freedom or hidden sectors.If it is instead measured at higher values, it will imply a period withω> 1/3.We argue that for scenarios with periods of kination in the early Universe, a significant fraction of the parameter space can be ruled out from dark radiation bounds at BBN.more » « less
-
Aalbers, J.; AbdusSalam, S. S.; Abe, K.; Aerne, V.; Agostini, F.; Ahmed Maouloud, S.; Akerib, D. S.; Akimov, D. Y.; Akshat, J.; Al Musalhi, A. K.; et al (, Journal of Physics G: Nuclear and Particle Physics)Abstract The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.more » « less
An official website of the United States government
