skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Quinlan-Gallego, Eamon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Bernstein-Sato polynomial is an important invariant of an element or an ideal in a polynomial ring or power series ring of characteristic zero, with interesting connections to various algebraic and topological aspects of the singularities of the vanishing locus. Work of Mustaţă, later extended by Bitoun and the third author, provides an analogous Bernstein-Sato theory for regular rings of positive characteristic. In this paper, we extend this theory to singular ambient rings in positive characteristic. We establish finiteness and rationality results for Bernstein-Sato roots for large classes of singular rings, and relate these roots to other classes of numerical invariants defined via the Frobenius map. We also obtain a number of new results and simplified arguments in the regular case. 
    more » « less
  2. Mustaţă defined Bernstein-Sato polynomials in prime characteristic for principal ideals and proved that the roots of these polynomials are related to the F F -jumping numbers of the ideal. This approach was later refined by Bitoun. Here we generalize these techniques to develop analogous notions for the case of arbitrary ideals and prove that these have similar connections to F F -jumping numbers. 
    more » « less