- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Rabaey, Jan M. (3)
-
Kanerva, Pentti (2)
-
Rahimi, Abbas (2)
-
Anderson, Matthew (1)
-
Balanuta, Artur (1)
-
Benini, Luca (1)
-
Davies, Mike (1)
-
Frady, E. Paxon (1)
-
Kent, Spencer J. (1)
-
Kleyko, Denis (1)
-
Kumar, Swarun (1)
-
Olshausen, Bruno A. (1)
-
Osipov, Evgeny (1)
-
Prabhakara, Akarsh (1)
-
Rachkovskij, Dmirti A. (1)
-
Rowe, Anthony (1)
-
Soltanaghaei, Elahe (1)
-
Sommer, Friedrich T. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This article reviews recent progress in the development of the computing framework Vector Symbolic Architectures (also known as Hyperdimensional Computing). This framework is well suited for implementation in stochastic, nanoscale hardware and it naturally expresses the types of cognitive operations required for Artificial Intelligence (AI). We demonstrate in this article that the ring-like algebraic structure of Vector Symbolic Architectures offers simple but powerful operations on highdimensional vectors that can support all data structures and manipulations relevant in modern computing. In addition, we illustrate the distinguishing feature of Vector Symbolic Architectures, “computing in superposition,” which sets it apart from conventional computing. This latter property opens the door to efficient solutions to the difficult combinatorial search problems inherent in AI applications. Vector Symbolic Architectures are Turing complete, as we show, and we see them acting as a framework for computing with distributed representations in myriad AI settings. This paper serves as a reference for computer architects by illustrating techniques and philosophy of VSAs for distributed computing and relevance to emerging computing hardware, such as neuromorphic computing.more » « less
-
Soltanaghaei, Elahe; Prabhakara, Akarsh; Balanuta, Artur; Anderson, Matthew; Rabaey, Jan M.; Kumar, Swarun; Rowe, Anthony (, Proceedings of the annual International Conference on Mobile Computing and Networking)null (Ed.)This paper presents Millimetro, an ultra-low-power tag that can be localized at high accuracy over extended distances. We develop Mil-limetro in the context of autonomous driving to efficiently localize roadside infrastructure such as lane markers and road signs, even if obscured from view, where visual sensing fails. While RF-based localization offers a natural solution, current ultra-low-power local-ization systems struggle to operate accurately at extended ranges under strict latency requirements. Millimetro addresses this challenge by re-using existing automotive radars that operate at mmWave fre-quency where plentiful bandwidth is available to ensure high accuracy and low latency. We address the crucial free space path loss problem experienced by signals from the tag at mmWave bands by building upon Van Atta Arrays that retro-reflect incident energy back towards the transmitting radar with minimal loss and low power consumption. Our experimental results indoors and outdoors demonstrate a scal-able system that operates at a desirable range (over 100 m), accuracy (centimeter-level), and ultra-low-power (< 3 uW).more » « less
-
Rahimi, Abbas; Kanerva, Pentti; Benini, Luca; Rabaey, Jan M. (, Proceedings of the IEEE)