skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rabbani, Hami"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coherent optical transmission systems can be modeled as a four-dimensional (4D) signal space resulting from the two polarization states, each with two quadratures. Recently, nonlinear analytical models have been proposed capable of capturing the impact of Kerr nonlinearity on 4D constellations. None of these addresses the inter-channel nonlinear interference (NLI) imposed by arbitrary modulation formats in multi-channel wavelength division multiplexed (WDM) systems. In this paper, we introduce a general nonlinear model for multi-channel WDM systems that is valid for arbitrary modulation formats, even asymmetric ones. The proposed model converges to the previous models, including the EGN model, in the special case of polarization multiplexed systems. The model focuses on the cross-phase modulation (XPM) nonlinear term that lies at the heart of the NLI in multi-channel WDM systems operating on standard high dispersion single-mode fiber. We show that strategic mappings of the modulation format's coordinates to the polarization states can reduce the NLI undergone by these formats. 
    more » « less
  2. Optical transmission systems intrinsically enjoy a four-dimensional (4D) constellation space, corresponding to two quadratures in two polarization states. In this paper, we introduce a general nonlinear model that is valid for 4D symmetric modulation formats. We take the inter-polarization dependency into account to derive this model. The model accounts for all perturbative nonlinear interference (NLI) terms, including self-channel, cross-channel and multi-channel interferences. Split step Fourier simulations show that the proposed model has the ability to predict the NLI with high levels of accuracy for both low and high fiber dispersion regimes. The simulation results further show that previous models, including the EGN model, inaccurately predict the NLI in certain scenarios. 
    more » « less