- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Glavic, Boris (2)
-
Rabl, Tilmann (2)
-
Salazar-Díaz, Ricardo (1)
-
Strassenburg, Nils (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Transfer learning is an effective technique for tuning a deep learning model when training data or computational resources are limited. Instead of training a new model from scratch, the parameters of an existing base model are adjusted for the new task. The accuracy of such a fine-tuned model depends on the suitability of the base model chosen. Model search automates the selection of such a base model by evaluating the suitability of candidate models for a specific task. This entails inference with each candidate model on task-specific data. With thousands of models available through model stores, the computational cost of model search is a major bottleneck for efficient transfer learning. In this work, we presentAlsatian, a novel model search system. Based on the observation that many candidate models overlap to a significant extent and following a careful bottleneck analysis, we propose optimization techniques that are applicable to many model search frameworks. These optimizations include: (i) splitting models into individual blocks that can be shared across models, (ii) caching of intermediate inference results and model blocks, and (iii) selecting a beneficial search order for models to maximize sharing of cached results. In our evaluation on state-of-the-art deep learning models from computer vision and natural language processing, we show thatAlsatianoutperforms baselines by up to 14x.more » « lessFree, publicly-accessible full text available June 17, 2026
-
Salazar-Díaz, Ricardo; Glavic, Boris; Rabl, Tilmann (, Proceedings of the VLDB Endowment)The performance of inference with machine learning (ML) models and its integration with analytical query processing have become critical bottlenecks for data analysis in many organizations. An ML inference pipeline typically consists of a preprocessing workflow followed by prediction with an ML model. Current approaches for in-database inference implement preprocessing operators and ML algorithms in the database either natively, by transpiling code to SQL, or by executing user-defined functions in guest languages such as Python. In this work, we present a radically different approach that approximates an end-to-end inference pipeline (preprocessing plus prediction) using a light-weight embedding that discretizes a carefully selected subset of the input features and an index that maps data points in the embedding space to aggregated predictions of an ML model. We replace a complex preprocessing workflow and model-based inference with a simple feature transformation and an index lookup. Our framework improves inference latency by several orders of magnitude while maintaining similar prediction accuracy compared to the pipeline it approximates.more » « less
An official website of the United States government
