- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0002000003000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Radcliffe, Jamie (5)
-
Lee, Kyungyong (2)
-
Nasr, George D. (2)
-
Pavan, A (2)
-
Vander_Woude, Jason (2)
-
Dixon, Pater (1)
-
Dixon, Peter (1)
-
Kirsch, Rachel (1)
-
Vinodchandran, N V (1)
-
Vinodchandran, NV (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 12, 2025
-
Kirsch, Rachel; Radcliffe, Jamie (, SIAM Journal on Discrete Mathematics)
-
Vander_Woude, Jason; Dixon, Pater; Pavan, A; Radcliffe, Jamie; Vinodchandran, NV (, Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024)
-
Lee, Kyungyong; Nasr, George D.; Radcliffe, Jamie (, The Electronic Journal of Combinatorics)We present a combinatorial formula using skew Young tableaux for the coefficients of Kazhdan-Lusztig polynomials for sparse paving matroids. These matroids are known to be logarithmically almost all matroids, but are conjectured to be almost all matroids. We also show the positivity of these coefficients using our formula. In special cases, such as uniform matroids, our formula has a nice combinatorial interpretation.more » « less
-
Lee, Kyungyong; Nasr, George D.; Radcliffe, Jamie (, The electronic journal of combinatorics)null (Ed.)
An official website of the United States government

Full Text Available