skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Radermacher, Max_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Humpback whale breathing-related sounds were recorded on elements of a coherent hydrophone array subaperture deployed vertically at the Great South Channel on the US Northeastern continental shelf in Fall 2021, where half of the hydrophones were in-air and the rest submerged underwater. In-air hydrophones recorded breathing sounds with approximately 2.5 s duration, but smaller bandwidths compared to underwater hydrophones where signal energies extended beyond 50 kHz, and a mean underwater source level of 161 ± 4 dB re 1 μPa at 1 m, based on measurements at 22.9 m. The underwater recorded humpback whale breathing sound spectra displayed a broadband dip centered at 15.7 kHz, with approximately 400 Hz half-power bandwidth, likely caused by attenuation from propagation through pulsating air bubbles. The air bubble radius for natural frequency of oscillations at 15.7 kHz is estimated to be 0.205–0.21 mm. These bubbles are capable of removing energy from the forward propagated humpback breathing sounds via resonance absorption most pronounced at and near bubble natural oscillation frequency. Humpback whale distances from the vertically deployed hydrophones are estimated and tracked by matching the curved nonlinear travel-time wavefront of its breathing sounds, since the whale was in the near-field of the subarray. 
    more » « less