skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Radeschi, Marco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider convex contact spheres Y Y all of whose Reeb orbits are closed. Any such Y Y admits a stratification by the periods of closed Reeb orbits. We show that Y Y “resembles” a contact ellipsoid: any stratum of Y Y is an integral homology sphere, and the sequence of Ekeland-Hofer spectral invariants of Y Y coincides with the full sequence of action values, each one repeated according to its multiplicity. 
    more » « less
  2. Abstract In this paper, we study polar foliations on simply connected symmetric spaces with non-negative curvature. We will prove that all such foliations are isoparametric as defined in [E. Heintze, X. Liu and C. Olmos,Isoparametric submanifolds and a Chevalley-type restriction theorem,Integrable systems, geometry, and topology,American Mathematical Society, Providence 2006, 151–190]. We will also prove a splitting theorem which, when leaves are compact, reduces the study of such foliations to polar foliations in compact simply connected symmetric spaces. Moreover, we will show that solutions to mean curvature flow of regular leaves in such foliations are always ancient solutions. This generalizes part of the results in [X. Liu and C.-L. Terng,Ancient solutions to mean curvature flow for isoparametric submanifolds,Math. Ann. 378 2020, 1–2, 289–315] for mean curvature flows of isoparametric submanifolds in spheres. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)