Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Because surface-grafted polyelectrolyte brushes (PEBs) are responsive to external stimuli, such as electric fields and ionic strength, PEBs are attractive for applications ranging from drug delivery to separations technologies. Essential to PEB utilization is understanding how critical parameters like grafting density (σ) impact PEB structure and the dynamics of the PEB and counterions. To study the effect of σ on PEB and counterion structure and dynamics, we fine-tune a coarse-grained model that retains the chemical specificity of a strong polyelectrolyte, poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC), using the MARTINI forcefield. Using “salt-free” conditions where the counterion concentration balances the charge on the brush, we build coarse-grained (CG) molecular dynamics simulations for MARTINI PMETAC brushes (N=150 monomers; MW = 31.2 kg/mol) at experimentally relevant values of σ = 0.05, 0.10, 0.20, and 0.40 chains/nm2. Using 5 µs simulations, we investigate the effects of grafting density on PEB structure, ion dissociation dynamics, polymer mobility, and counterion diffusivity. Results show that competition between electrostatic interactions, steric hindrance, and polymer mobility controls counterion diffusivity. The interplay of these factors leads to diffusivity that depends non-monotonically on σ, with counterion diffusivity peaking at an intermediate σ = 0.10 chains/nm2.more » « lessFree, publicly-accessible full text available July 9, 2025
-
Rare earth elements (REEs) are critical materials to modern technologies. They are obtained by selective separation from mining feedstocks consisting of mixtures of their trivalent cation. We are developing an all-aqueous, bioinspired, interfacial separation using peptides as amphiphilic molecular extractants. Lanthanide binding tags (LBTs) are amphiphilic peptide sequences based on the EF-hand metal binding loops of calcium-binding proteins which complex selectively REEs. We study LBTs optimized for coordination to Tb3+using luminescence spectroscopy, surface tensiometry, X-ray reflectivity, and X-ray fluorescence near total reflection, and find that these LBTs capture Tb3+in bulk and adsorb the complex to the interface. Molecular dynamics show that the binding pocket remains intact upon adsorption. We find that, if the net negative charge on the peptide results in a negatively charged complex, excess cations are recruited to the interface by nonselective Coulombic interactions that compromise selective REE capture. If, however, the net negative charge on the peptide is −3, resulting in a neutral complex, a 1:1 surface ratio of cation to peptide is achieved. Surface adsorption of the neutral peptide complexes from an equimolar mixture of Tb3+and La3+demonstrates a switchable platform dictated by bulk and interfacial effects. The adsorption layer becomes enriched in the favored Tb3+when the bulk peptide is saturated, but selective to La3+for undersaturation due to a higher surface activity of the La3+complex.more » « lessFree, publicly-accessible full text available December 24, 2025