- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
An, Xianhao (1)
-
Aronin, Matthew (1)
-
Cates, David (1)
-
Goh, Ansel (1)
-
Kirn, Benjamin (1)
-
Krienke, Josh (1)
-
Liang, Minyi (1)
-
Lowery, Samuel (1)
-
Malkoc, Ege (1)
-
Meier, Jeffrey (1)
-
Natonson, Max (1)
-
Radić, Veljko (1)
-
Rodoplu, Yavuz (1)
-
Saha, Bhaswati (1)
-
Scott, Evan (1)
-
Simkins, Roman (1)
-
Zupan, Alexander (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The ribbon number of a knot is the minimum number of ribbon singularities among all ribbon disks bounded by that knot. In this paper, we build on the systematic treatment of this knot invariant initiated in recent work of Friedl, Misev, and Zupan. We show that the set of Alexander polynomials of knots with ribbon number at most four contains 56 polynomials, and we use this set to compute the ribbon numbers for many 12-crossing knots. We also study higher-genus ribbon numbers of knots, presenting some examples that exhibit interesting behavior and establishing that the success of the Alexander polynomial at controlling genus-0 ribbon numbers does not extend to higher genera.more » « lessFree, publicly-accessible full text available November 1, 2026
An official website of the United States government
