skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Radovich, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. We present our sixth work in a series dedicated to variability studies of active galactic nuclei (AGN), based on the survey of the COSMOS field by the VLT Survey Telescope (VST). Its 54 r -band visits over 3.3 yr and single-visit depth of 24.6 r -band mag make this dataset a valuable scaled-down version that can help forecast the performance of the Rubin Observatory Legacy Survey of Space and Time (LSST). Aims. This work is centered on the analysis of the structure function (SF) of VST-COSMOS AGN, investigating possible differences in its shape and slope related to how the AGN were selected, and explores possible connections between the AGN ensemble variability and the black-hole mass, accretion rate, bolometric luminosity, redshift, and obscuration of the source. Given its features, our dataset opens up the exploration of samples ∼2 mag fainter than most literature to date. Methods. We identified several samples of AGN – 677 in total – obtained through a variety of selection techniques partly overlapping. Our analysis compares the results for the various samples. We split each sample in two based on the median of the physical property of interest, and analyzed the differences in the SF shape and slope, and their possible causes. Results. While the SF shape does not change with depth, it is highly affected by the type of AGN (unobscured or obscured) included in the sample. Where a linear region can be identified, we find that the variability amplitude is anticorrelated to the accretion rate and bolometric luminosity, consistent with previous literature on the topic, while no dependence on black-hole mass emerges from this study. With its longer baseline and denser and more regular sampling, the LSST will allow for an improved characterization of the SF and its dependencies on the mentioned physical properties over much larger AGN samples. 
    more » « less
  2. Free, publicly-accessible full text available October 20, 2024
  3. ABSTRACT

    We report on the search for the optical counterpart of the gravitational event GW170814, which was carried out with the VLT Survey Telescope (VST) by the GRAvitational Wave Inaf TeAm. Observations started 17.5 h after the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo alert and we covered an area of 99 deg2 that encloses $\sim 77{{\ \rm per\ cent}}$ and $\sim 59{{\ \rm per\ cent}}$ of the initial and refined localization probability regions, respectively. A total of six epochs were secured over nearly two months. The survey reached an average limiting magnitude of 22 AB mag in the r band. After assuming the model described in Perna, Lazzati & Farr, that derives as possible optical counterpart of a BBH (binary black hole) event a transient source declining in about one day, we have computed a survey efficiency of about $5{{\ \rm per\ cent}}$. This paper describes the VST observational strategy and the results obtained by our analysis pipelines developed to search for optical transients in multi-epoch images. We report the catalogue of the candidates with possible identifications based on light-curve fitting. We have identified two dozens of SNe, nine AGNs, and one QSO. Nineteen transients characterized by a single detection were not classified. We have restricted our analysis only to the candidates that fall into the refined localization map. None out of 39 left candidates could be positively associated with GW170814. This result implies that the possible emission of optical radiation from a BBH merger had to be fainter than r ∼ 22 (Loptical ∼ 1.4 × 1042 erg s−1) on a time interval ranging from a few hours up to two months after the gravitational wave event.

     
    more » « less