skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rafiq, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Due to the prevalence and severe consequences of cyberbullying, numerous research works have focused on mining and analyzing social network data to understand cyberbullying behavior and then using the gathered insights to develop accurate classifiers to detect cyberbullying. Some recent works have been proposed to leverage the detection classifiers in a centralized cyberbullying detection system and send notifications to the concerned authority whenever a person is perceived to be victimized. However, two concerns limit the effectiveness of a centralized cyberbullying detection system. First, a centralized detection system gives a uniform severity level of alerts to everyone, even though individual guardians might have different tolerance levels when it comes to what constitutes cyberbullying. Second, the volume of data being generated by old and new social media makes it computationally prohibitive for a centralized cyberbullying detection system to be a viable solution. In this work, we propose BullyAlert, an android mobile application for guardians that allows the computations to be delegated to the hand-held devices. In addition to that, we incorporate an adaptive classification mechanism to accommodate the dynamic tolerance level of guardians when receiving cyberbullying alerts. Finally, we include a preliminary user analysis of guardians and monitored users using the data collected from BullyAlert usage. 
    more » « less