skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raghanti, Mary Ann"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The use of stone hammers to produce sharp stone flakes—knapping—is thought to represent a significant stage in hominin technological evolution because it facilitated the exploitation of novel resources, including meat obtained from medium‐to‐large‐sized vertebrates. The invention of knapping may have occurred via an additive (i.e., cumulative) process that combined several innovative stages. Here, we propose that one of these stages was the hominin use of ‘naturaliths,’ which we define as naturally produced sharp stone fragments that could be used as cutting tools. Based on a review of the literature and our own research, we first suggest that the ‘typical’ view, namely that sharp‐edged stones are seldom produced by nonprimate processes, is likely incorrect. Instead, naturaliths can be, and are being, endlessly produced in a wide range of settings and thus may occur on the landscape in far greater numbers than archaeologists currently understand or acknowledge. We then explore the potential role this ‘naturalith prevalence’ may have played in the origin of hominin stone knapping. Our hypothesis suggests that the origin of knapping was not a ‘Eureka!’ moment whereby hominins first made a sharp flake by intention or by accident and then sought something to cut, but instead was an emulative process by hominins aiming to reproduce the sharp tools furnished by mother nature and already in demand. We conclude with a discussion of several corollaries our proposal prompts, and several avenues of future research that can support or question our proposal. 
    more » « less
    Free, publicly-accessible full text available March 15, 2026
  2. ABSTRACT The nucleus accumbens (NAcc) and ventral pallidum (VP) are key nodes in the mesolimbic reward pathway that facilitate stimulus salience, including the regulation of social motivation and attachment. Primate species display variation in social behaviors, including different levels of impulsivity, bonding, and aggression. Previous research has implicated neuromodulation of the reward pathway in the differential expression of various social behaviors, suggesting that differences in neurotransmitter innervation may play a role in species‐specific patterns. To explore this, we examined serotonergic innervation in the NAcc and VP among primates. We used stereology to quantify serotonin transporter‐immunoreactive (SERT‐ir) axon length density in the NAcc and VP of 13 primate species, including humans, great apes, and cercopithecid and platyrrhine monkeys. Our data show that serotonergic innervation density within both the NAcc and VP is highly conserved among species. This finding contrasts with our previous findings of higher levels of SERT‐ir axons in the dorsal striatum of humans and great apes relative to monkeys, a human‐specific increase in dopaminergic innervation within the NAcc and VP, and a human‐specific increase of neuropeptide Y in the NAcc, highlighting the mosaic nature of innervation patterns among species. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution. 
    more » « less
  4. The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations. 
    more » « less
  5. Background Dehydroepiandrosterone-sulfate is the most abundant circulating androgen in humans and other catarrhines. It is involved in several biological functions, such as testosterone production, glucocorticoid antagonist actions, neurogenesis and neuroplasticty. Although the role of dehydroepiandrosterone-sulfate (DHEAS) in cognition remains elusive, the DHEAS/cortisol ratio has been positively associated with a slower cognitive age-decline and improved mood in humans. Whether this relationship is found in nonhuman primates remains unknown. Methods We measured DHEAS and cortisol levels in serum of 107 adult chimpanzees to investigate the relationship between DHEAS levels and age. A subset of 21 chimpanzees was used to test the potential associations between DHEAS, cortisol, and DHEAS/cortisol ratio in cognitive function, taking into account age, sex, and their interactions. We tested for cognitive function using the primate cognitive test battery (PCTB) and principal component analyses to categorize cognition into three components: spatial relationship tasks, tool use and social communication tasks, and auditory-visual sensory perception tasks. Results DHEAS levels, but not the DHEAS/cortisol ratio, declined with age in chimpanzees. Our analyses for spatial relationships tasks revealed a significant, positive correlation with the DHEAS/cortisol ratio. Tool use and social communication had a negative relationship with age. Our data show that the DHEAS/cortisol ratio, but not DHEAS individually, is a promising predictor of spatial cognition in chimpanzees. 
    more » « less
  6. null (Ed.)
  7. Abstract The genusMacacais an ideal model for investigating the biological basis of primate social behavior from an evolutionary perspective. A significant amount of behavioral diversity has been reported among the macaque species, but little is known about the neural substrates that support this variation. The present study compared neural cell density and serotonergic innervation of the amygdala among four macaque species using histological and immunohistochemical methods. The species examined included rhesus (Macaca mulatta), Japanese (M. fuscata), pigtailed (M. nemestrina), and moor macaques (M. maura). We anticipated that the more aggressive rhesus and Japanese macaques would have lower serotonergic innervation within the amygdala compared to the more affiliative pigtailed and moor macaques. In contrast to our prediction, pigtailed macaques had higher serotonergic innervation than Japanese and moor macaques in the basal and central amygdala nuclei when controlling for neuron density. Our analysis of neural cell populations revealed that Japanese macaques possess significantly higher neuron and glia densities relative to the other three species, however we observed no glia‐to‐neuron ratio differences among species. The results of this study revealed serotonergic innervation and cell density differences among closely related macaque species, which may play a role in modulating subtle differences in emotional processing and species‐typical social styles. 
    more » « less