- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
40
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Raghavendra, Prasad (4)
-
Hopkins, Samuel B. (2)
-
Cherapanamjeri, Yeshwanth (1)
-
Ghazi, Badih (1)
-
Kamath, Pritish (1)
-
Kathuria, Tarun (1)
-
Mohanty, Sidhanth (1)
-
Shetty, Abhishek (1)
-
Tripuraneni, Nilesh (1)
-
Xu, Jeff (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
2022 USENIX Annual Technical Conference (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Agarwal (0)
-
A. Beygelzimer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mohanty, Sidhanth ; Raghavendra, Prasad ; Xu, Jeff ( , ACM Symposium on Theory of Computing)
-
Cherapanamjeri, Yeshwanth ; Hopkins, Samuel B. ; Kathuria, Tarun ; Raghavendra, Prasad ; Tripuraneni, Nilesh ( , ACM Symposium on Theory of Computing)
-
Ghazi, Badih ; Kamath, Pritish ; Raghavendra, Prasad ( , 33rd Computational Complexity Conference, CCC 2018)We introduce a new technique for reducing the dimension of the ambient space of low-degree polynomials in the Gaussian space while preserving their relative correlation structure. As an application, we obtain an explicit upper bound on the dimension of an epsilon-optimal noise-stable Gaussian partition. In fact, we address the more general problem of upper bounding the number of samples needed to epsilon-approximate any joint distribution that can be non-interactively simulated from a correlated Gaussian source. Our results significantly improve (from Ackermann-like to "merely" exponential) the upper bounds recently proved on the above problems by De, Mossel & Neeman [CCC 2017, SODA 2018 resp.] and imply decidability of the larger alphabet case of the gap non-interactive simulation problem posed by Ghazi, Kamath & Sudan [FOCS 2016]. Our technique of dimension reduction for low-degree polynomials is simple and can be seen as a generalization of the Johnson-Lindenstrauss lemma and could be of independent interest.