We present here a characterization of the low background NaI(Tl) crystal NaI-33 based on a period of almost one year of data taking (891 kg
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract days exposure) in a detector configuration with no use of organic scintillator veto. This remarkably radio-pure crystal already showed a low background in the SABRE Proof-of-Principle (PoP) detector, in the low energy region of interest (1–6 keV) for the search of dark matter interaction via the annual modulation signature. As the vetoable background components, such as$$\times $$ K, are here sub-dominant, we reassembled the PoP setup with a fully passive shielding. We upgraded the selection of events based on a Boosted Decision Tree algorithm that rejects most of the PMT-induced noise while retaining scintillation signals with > 90% efficiency in 1–6 keV. We find an average background of 1.39 ± 0.02 counts/day/kg/keV in the region of interest and a spectrum consistent with data previously acquired in the PoP setup, where the external veto background suppression was in place. Our background model indicates that the dominant background component is due to decays of$$^{40}$$ Pb, only partly residing in the crystal itself. The other location of$$^{210}$$ Pb is the reflector foil that wraps the crystal. We now proceed to design the experimental setup for the physics phase of the SABRE North detector, based on an array of similar crystals, using a low radioactivity PTFE reflector and further improving the passive shielding strategy, in compliance with the new safety and environmental requirements of Laboratori Nazionali del Gran Sasso.$$^{210}$$ -
The dark matter interpretation of the DAMA/LIBRA annual modulation signal represents a long-standing open question in astroparticle physics. The SABRE experiment aims to test such claim, bringing the same detection technique to an unprecedented sensitivity. Based on ultra-low background NaI(Tl) scintillating crystals like DAMA, SABRE features a liquid scintillator Veto system, surrounding the main target, and it will deploy twin detectors: one in the Northern hemisphere at Laboratori Nazionali del Gran Sasso (LNGS), Italy and the other in the Stawell Underground Physics Laboratory (SUPL), Australia, first laboratory of this kind in the Southern hemisphere. The first very-high-purity crystal produced by the collaboration was shipped to LNGS in 2019 for characterization. It features a potassium contamination, measured by mass spectroscopy, of the order of 4 ppb, about three times lower than DAMA/LIBRA crystals. The first phase of the SABRE experiment is a Proof-of-Principle (PoP) detector featuring one crystal and a liquid scintillator Veto, at LNGS. This contribution will present the results of the stand-alone characterization of the first SABRE high-purity crystal, as well as the status of the PoP detector, commissioned early in the summer of 2020.more » « less
-
Abstract The CMS detector is a general-purpose apparatus that detects high-energy collisions produced at the LHC. Online data quality monitoring of the CMS electromagnetic calorimeter is a vital operational tool that allows detector experts to quickly identify, localize, and diagnose a broad range of detector issues that could affect the quality of physics data. A real-time autoencoder-based anomaly detection system using semi-supervised machine learning is presented enabling the detection of anomalies in the CMS electromagnetic calorimeter data. A novel method is introduced which maximizes the anomaly detection performance by exploiting the time-dependent evolution of anomalies as well as spatial variations in the detector response. The autoencoder-based system is able to efficiently detect anomalies, while maintaining a very low false discovery rate. The performance of the system is validated with anomalies found in 2018 and 2022 LHC collision data. In addition, the first results from deploying the autoencoder-based system in the CMS online data quality monitoring workflow during the beginning of Run 3 of the LHC are presented, showing its ability to detect issues missed by the existing system.
Free, publicly-accessible full text available June 24, 2025 -
Abstract Ultra-pure NaI(Tl) crystals are the key element for a model-independent verification of the long standing DAMA result and a powerful means to search for the annual modulation signature of dark matter interactions. The SABRE collaboration has been developing cutting-edge techniques for the reduction of intrinsic backgrounds over several years. In this paper we report the first characterization of a 3.4 kg crystal, named NaI-33, performed in an underground passive shielding setup at LNGS. NaI-33 has a record low
K contamination of 4.3 ± 0.2 ppb as determined by mass spectrometry. We measured a light yield of 11.1 ± 0.2 photoelectrons/keV and an energy resolution of 13.2% (FWHM/E) at 59.5 keV. We evaluated the activities of$$^{39}$$ Ra and$$^{226}$$ Th inside the crystal to be$$^{228}$$ Bq/kg and$$5.9\pm 0.6~\upmu $$ Bq/kg, respectively, which would indicate a contamination from$$1.6\pm 0.3~\upmu $$ U and$$^{238}$$ Th at part-per-trillion level. We measured an activity of 0.51 ± 0.02 mBq/kg due to$$^{232}$$ Pb out of equilibrium and a$$^{210}$$ quenching factor of 0.63 ± 0.01 at 5304 keV. We illustrate the analyses techniques developed to reject electronic noise in the lower part of the energy spectrum. A cut-based strategy and a multivariate approach indicated a rate, attributed to the intrinsic radioactivity of the crystal, of$$\alpha $$ 1 count/day/kg/keV in the [5–20] keV region.$$\sim $$ -
Free, publicly-accessible full text available January 1, 2026
-
Abstract SABRE is a dark matter direct detection experiment aiming to measure the annual modulation of the dark matter interaction rate in NaI(Tl) crystals. SABRE focuses on the achievement of an ultra-low background rate operating high-purity NaI(Tl) crystals in a liquid scintillator veto for active background rejection. Moreover, twin experiments will be located in both Northern and Southern hemispheres (Italy and Australia) to disentangle any possible contribution from seasonal or site-related effects. In this article the results of the first measurements with a NaI(Tl) crystal for the SABRE experiment performed at LNGS are presented.more » « less
-
Abstract SABRE is a dark matter direct detection experiment based on NaI(Tl) scintillating crystals. The primary goal of the experiment is to test the dark matter interpretation of the DAMA/LIBRA annual modulation signal. To reach its purpose, SABRE will operate an array of ultra-low background NaI(Tl) crystals within an active veto, based on liquid scintillator. Finally two twin detectors will be used, one in the northern hemisphere at Laboratori Nazionali del Gran Sasso, Italy (LNGS) and the other, first of its kind, in the southern hemisphere, in the Stawell Underground Physic Laboratory (SUPL). The collaboration has successfully developed a NaI(Tl) crystal with the impressive potassium content of about 4 ppb, according to the mass spectroscopy measurements. A value that, if confirmed, would be about 3 times lower than the DAMA/LIBRA crystals one. The first phase of the SABRE experiment, called SABRE Proof of Principle (PoP), aims to prove the achieved radiopurity by direct measurement of crystals at LNGS. This work reports the status of the PoP setup and the recent progresses on the development of low radioactivity NaI(Tl) crystals.more » « less
-
Abstract Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors.
Free, publicly-accessible full text available December 1, 2025 -
A bstract A measurement is performed of Higgs bosons produced with high transverse momentum (
p T) via vector boson or gluon fusion in proton-proton collisions. The result is based on a data set with a center-of-mass energy of 13 TeV collected in 2016–2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb− 1. The decay of a high-p THiggs boson to a boosted bottom quark-antiquark pair is selected using large-radius jets and employing jet substructure and heavy-flavor taggers based on machine learning techniques. Independent regions targeting the vector boson and gluon fusion mechanisms are defined based on the topology of two quark-initiated jets with large pseudorapidity separation. The signal strengths for both processes are extracted simultaneously by performing a maximum likelihood fit to data in the large-radius jet mass distribution. The observed signal strengths relative to the standard model expectation are and$$ {4.9}_{-1.6}^{+1.9} $$ for the vector boson and gluon fusion mechanisms, respectively. A differential cross section measurement is also reported in the simplified template cross section framework.$$ {1.6}_{-1.5}^{+1.7} $$ Free, publicly-accessible full text available December 1, 2025