skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Rahman, Muhammad M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Egg waste is a major contributor to global food waste, accounting for 15% of discarded food in the United States. Typically, eggs have a shorter shelf life at room temperature and are preserved in refrigeration from production to consumption. However, maintaining constant refrigeration is energy‐intensive and expensive. Here, a bionanocomposite coating has been developed that incorporates each element of eggs – egg white, yolk, and eggshell – to increase the shelf life of fresh eggs without requiring further refrigeration. The quality of eggs has been successfully preserved for up to three weeks at room temperature. The coated eggs maintain the highest grade (AA) and exhibit improved Haugh Unit (HU), Yolk Index (YI), and pH compared to uncoated eggs. The coating reduces weight loss by ≈37% with an increase in HU (≈12.5%) and YI (≈13.9%). Morphological analysis reveals strong adhesion of the coating to the eggshell surface, showcasing promising barrier properties. The coating demonstrates an optimal combination of oxygen permeability (≈12.2 cm3 µm m−2 d−1 kPa−1) and water vapor transmission (≈31.5 g mm m−2per day) with excellent antimicrobial properties. Overall, this approach of repurposing eggs into a high‐performance coating shows a promising viable alternative to refrigeration and a solution to combat egg waste.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. “Green” composites were fabricated using modified sisal fibers and agro‐waste derived resins from nonedible protein and starch in a simple and cost‐effective manner. Sisal fibers were modified using a novel combination of mercerization followed by heat treatment under a pre‐determined tension which improved their Young's modulus by over 200% (from 5.5 to 16.7 GPa) and tensile strength by about 50% (from 300 to 450 MPa). The non‐edible protein and starch were extracted from defatted karanja (Pongamia pinnata) and mango (Mangifera indica) seed cake wastes, respectively, to prepare the green resins. Composite specimens were fabricated using as‐received and modified fibers and agro‐waste derived resins using a hand lay‐up process followed by hot‐pressing. The tensile properties of the composites made with modified fibers showed significant improvement as compared to the composites made with as‐received fibers as well as other edible starch or protein‐based sisal composites. POLYM. COMPOS., 40:99–108, 2019. © 2017 Society of Plastics Engineers

     
    more » « less
  5. Abstract

    Despite decades of research, metallic corrosion remains a long‐standing challenge in many engineering applications. Specifically, designing a material that can resist corrosion both in abiotic as well as biotic environments remains elusive. Here a lightweight sulfur–selenium (S–Se) alloy is designed with high stiffness and ductility that can serve as an excellent corrosion‐resistant coating with protection efficiency of ≈99.9% for steel in a wide range of diverse environments. S–Se coated mild steel shows a corrosion rate that is 6–7 orders of magnitude lower than bare metal in abiotic (simulated seawater and sodium sulfate solution) and biotic (sulfate‐reducing bacterial medium) environments. The coating is strongly adhesive, mechanically robust, and demonstrates excellent damage/deformation recovery properties, which provide the added advantage of significantly reducing the probability of a defect being generated and sustained in the coating, thus improving its longevity. The high corrosion resistance of the alloy is attributed in diverse environments to its semicrystalline, nonporous, antimicrobial, and viscoelastic nature with superior mechanical performance, enabling it to successfully block a variety of diffusing species.

     
    more » « less